Global existence for a nonstandard viscous Cahn-Hilliard system with dynamic boundary condition

Loading...
Thumbnail Image

Date

Volume

2284

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

In this paper, we study a model for phase segregation taking place in a spatial domain that was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105-118. The model consists of a strongly coupled system of nonlinear parabolic differential equations, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically. In contrast to the existing literature about this PDE system, we consider here a dynamic boundary condition involving the Laplace-Beltrami operator for the order parameter. This boundary condition models an additional nonconserving phase transition occurring on the surface of the domain. Different well-posedness results are shown, depending on the smoothness properties of the involved bulk and surface free energies.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.