On a Cheeger Type Inequality in Cayley Graphs of Finite Groups
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 20 | |
dc.contributor.author | Biswas, Arindam | |
dc.date.accessioned | 2024-10-16T16:43:28Z | |
dc.date.available | 2024-10-16T16:43:28Z | |
dc.date.issued | 2019 | |
dc.description.abstract | [nicht gut kopierbar]Let G be a finite group. It was remarked by Breuillard-Green-Guralnick-Tao that if the Cayley graph C(G,S) is an expander graph and is non-bipartite then the spectrum of the adjacency operator T is bounded away from −1. In this article we are interested in explicit bounds for the spectrum of these graphs. Specifically, we show that the non-trivial spectrum of the adjacency operator lies in the interval [−1+h(G)⁴/γ,1−h(G)²/2d²], where h(G) denotes the (vertex) Cheeger constant of the d regular graph C(G,S) with respect to a symmetric set S of generators and γ=2⁹d⁶(d+1)². | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16911 | |
dc.identifier.uri | https://doi.org/10.34657/15933 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2019-20 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.subject.other | Cheeger inequality | |
dc.subject.other | Expander graphs | |
dc.subject.other | Finite Cayley graphs | |
dc.title | On a Cheeger Type Inequality in Cayley Graphs of Finite Groups | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2019_20.pdf
- Size:
- 456.21 KB
- Format:
- Adobe Portable Document Format
- Description: