Mini-Workshop: Multivariate Orthogonal Polynomials: New synergies with Numerical Analysis

dc.bibliographicCitation.journalTitleOberwolfach reports : OWR
dc.bibliographicCitation.volume43
dc.contributor.otherCuyt, Annie
dc.contributor.otherMelenk, Markus
dc.contributor.otherSauter, Stefan
dc.contributor.otherXu, Yuan
dc.date.accessioned2024-10-18T08:29:04Z
dc.date.available2024-10-18T08:29:04Z
dc.date.issued2023
dc.description.abstractMultivariate polynomials and, in particular, multivariate orthogonal polynomials (MOPs) are research areas within the fields of special functions, Lie groups, quantum groups, computer algebra to name only some of them. However, there are many important areas in the field of numerical analysis where multivariate polynomials (of high order) play a crucial role: approximation by spectral methods and finite elements, discrete calculus, polynomial trace liftings, exact sequence properties, sparsity, efficient and stable recursions, analysis of the geometry of the zeros. The miniworkshop brought together experts from the fields of MOPs and numerical analysis of partial differential equations.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/17074
dc.identifier.urihttps://doi.org/10.34657/16096
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWR-2023-43
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.gndKonferenzschrift
dc.titleMini-Workshop: Multivariate Orthogonal Polynomials: New synergies with Numerical Analysis
dc.typeArticle
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2023_43.pdf
Size:
852.38 KB
Format:
Adobe Portable Document Format
Description: