Discovery of hemocompatible bacterial biofilm-resistant copolymers

dc.bibliographicCitation.firstPage120312eng
dc.bibliographicCitation.journalTitleBiomaterials : biomaterials reviews onlineeng
dc.bibliographicCitation.volume260eng
dc.contributor.authorSingh, Taranjit
dc.contributor.authorHook, Andrew L.
dc.contributor.authorLuckett, Jeni
dc.contributor.authorMaitz, Manfred F.
dc.contributor.authorSperling, Claudia
dc.contributor.authorWerner, Carsten
dc.contributor.authorDavies, Martyn C.
dc.contributor.authorIrvine, Derek J.
dc.contributor.authorWilliams, Paul
dc.contributor.authorAlexander, R.
dc.date.accessioned2021-09-09T08:48:39Z
dc.date.available2021-09-09T08:48:39Z
dc.date.issued2020
dc.description.abstractBlood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with these specific properties. A series of weakly amphiphilic monomers are combinatorially polymerized with acrylate glycol monomers of varying chain lengths to create a library of 645 multi-functional candidate materials containing multiple chemical moieties that impart anti-biofilm, hemo- and immuno-compatible properties. These materials are screened in over 15,000 individual biological assays, targeting two bacterial species, one Gram negative (Pseudomonas aeruginosa) and one Gram positive (Staphylococcus aureus) commonly associated with central venous catheter infections, using 5 different measures of hemocompatibility and 6 measures of immunocompatibililty. Selected copolymers reduce platelet activation, platelet loss and leukocyte activation compared with the standard comparator PTFE as well as reducing bacterial biofilm formation in vitro by more than 82% compared with silicone. Poly(isobornyl acrylate-co-triethylene glycol methacrylate) (75:25) is identified as the optimal material across all these measures reducing P. aeruginosa biofilm formation by up to 86% in vivo in a murine foreign body infection model compared with uncoated silicone. © 2020 The Authorseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6766
dc.identifier.urihttps://doi.org/10.34657/5813
dc.language.isoengeng
dc.publisherAmsterdam [u.a.] : Elsevier Scienceeng
dc.relation.doihttps://doi.org/10.1016/j.biomaterials.2020.120312
dc.relation.essn1878-5905
dc.relation.issn0142-9612
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc570eng
dc.subject.otherBacterial biofilmeng
dc.subject.otherHemocompatiblilityeng
dc.subject.otherHigh throughput screeningeng
dc.subject.otherPolymer microarrayeng
dc.subject.otherPseudomonas aeruginosaeng
dc.subject.otherStaphylococcus aureuseng
dc.titleDiscovery of hemocompatible bacterial biofilm-resistant copolymerseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectBiowissensschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Discovery of hemocompatible bacterial biofilm-resistant copolymers.pdf
Size:
8.46 MB
Format:
Adobe Portable Document Format
Description: