Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

dc.bibliographicCitation.firstPage655eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleNumerische Mathematikeng
dc.bibliographicCitation.lastPage692eng
dc.bibliographicCitation.volume145eng
dc.contributor.authorEigel, Martin
dc.contributor.authorMarschall, Manuel
dc.contributor.authorPfeffer, Max
dc.contributor.authorSchneider, Reinhold
dc.date.accessioned2022-06-21T06:08:16Z
dc.date.available2022-06-21T06:08:16Z
dc.date.issued2020
dc.description.abstractStochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9083
dc.identifier.urihttps://doi.org/10.34657/8121
dc.language.isoengeng
dc.publisherBerlin ; Heidelberg : Springereng
dc.relation.doihttps://doi.org/10.1007/s00211-020-01123-1
dc.relation.essn0945-3245
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc510eng
dc.titleAdaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representationseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adaptive_stochastic_Galerkin_FEM.pdf
Size:
672.31 KB
Format:
Adobe Portable Document Format
Description:
Collections