Hutchinson's Intervals and Entire Functions from the Laguerre-Pólya Class
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 19 | |
dc.contributor.author | Nguyen, Thu Hien | |
dc.contributor.author | Vishnyakova, Anna | |
dc.date.accessioned | 2024-10-17T05:34:11Z | |
dc.date.available | 2024-10-17T05:34:11Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We find the intervals [α,β(α)] such that if a univariate real polynomial or entire function f(z)=a₀+a₁z+a₂z²+⋯ with positive coefficients satisfy the conditions a2_k−1ak−2ak∈[α,β(α)] for all k≥2, then f belongs to the Laguerre-Pólya class. For instance, from J.I. Hutchinson's theorem, one can observe that f belongs to the Laguerre-Pólya class (has only real zeros) when qk(f)∈[4,+∞). We are interested in finding those intervals which are not subsets of [4,+∞). | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16968 | |
dc.identifier.uri | https://doi.org/10.34657/15990 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2022-19 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject | Laguerre-Pólya class | |
dc.subject | Laguerre-Pólya class of type I | |
dc.subject | Entire functions of order zero | |
dc.subject | Real-rooted polynomials | |
dc.subject | Hyperbolic polynomials | |
dc.subject.ddc | 510 | |
dc.title | Hutchinson's Intervals and Entire Functions from the Laguerre-Pólya Class | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2022_19.pdf
- Size:
- 524.3 KB
- Format:
- Adobe Portable Document Format
- Description: