Precise Laplace asymptotics for singular stochastic PDEs: The case of 2D gPAM

dc.bibliographicCitation.firstPage109446eng
dc.bibliographicCitation.journalTitleJournal of functional analysiseng
dc.bibliographicCitation.volume283eng
dc.contributor.authorFriz, Peter K.
dc.contributor.authorKlose, Tom
dc.date.accessioned2022-06-17T06:41:35Z
dc.date.available2022-06-17T06:41:35Z
dc.date.issued2022
dc.description.abstractWe implement a Laplace method for the renormalised solution to the generalised 2D Parabolic Anderson Model (gPAM) driven by a small spatial white noise. Our work rests upon Hairer's theory of regularity structures which allows to generalise classical ideas of Azencott and Ben Arous on path space as well as Aida and Inahama and Kawabi on rough path space to the space of models. The technical cornerstone of our argument is a Taylor expansion of the solution in the noise intensity parameter: We prove precise bounds for its terms and the remainder and use them to estimate asymptotically irrevelant terms to arbitrary order. While most of our arguments are not specific to gPAM, we also outline how to adapt those that are.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9062
dc.identifier.urihttps://doi.org/10.34657/8100
dc.language.isoengeng
dc.publisherAmsterdam [u.a.] : Elseviereng
dc.relation.doihttps://doi.org/10.1016/j.jfa.2022.109446
dc.relation.essn1096-0783
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc510eng
dc.subject.otherLaplace asymptoticseng
dc.subject.otherLarge deviationseng
dc.subject.otherRegularity structureseng
dc.subject.otherSingular stochastic PDEseng
dc.titlePrecise Laplace asymptotics for singular stochastic PDEs: The case of 2D gPAMeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Precise_Laplace_asymptotics.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:
Collections