Local and Global Canonical Forms for Differential-Algebraic Equations with Symmetries

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume5
dc.contributor.authorKunkel, Peter
dc.contributor.authorMehrmann, Volker
dc.date.accessioned2024-10-17T05:34:13Z
dc.date.available2024-10-17T05:34:13Z
dc.date.issued2022
dc.description.abstractLinear time-varying differential-algebraic equations with symmetries are studied. The structures that we address are self-adjoint and skew-adjoint systems. Local and global canonical forms under congruence are presented and used to classify the geometric properties of the flow associated with the differential equation as symplectic or generalized orthogonal flow. As applications, the results are applied to the analysis of dissipative Hamiltonian systems arising from circuit simulation and incompressible flow.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16972
dc.identifier.urihttps://doi.org/10.34657/15994
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2022-05
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectDifferential-algebraic equation
dc.subjectSelf-adjoint system
dc.subjectSkew-adjoint system
dc.subjectDissipative Hamiltonian system
dc.subjectCanonical form under congruence
dc.subject.ddc510
dc.titleLocal and Global Canonical Forms for Differential-Algebraic Equations with Symmetries
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2022_05.pdf
Size:
535.46 KB
Format:
Adobe Portable Document Format
Description: