On the fast computation of high dimensional volume potentials

dc.contributor.authorLanzara, Flavia
dc.contributor.authorMaz'ya, Vladimir
dc.contributor.authorSchmidt, Gunther
dc.date.accessioned2017-01-04T16:09:59Z
dc.date.available2019-06-28T08:03:56Z
dc.date.issued2009
dc.description.abstractA fast method of an arbitrary high order for approximating volume potentials is proposed, which is effective also in high dimensional cases. Basis functions intro- duced in the theory of approximate approximations are used. Results of numerical experiments, which show approximation order O(h8) for the Newton potential in high dimensions, for example, for n = 200 000, are provided. The computation time scales linearly in the space dimension. New one-dimensional integral representations with separable integrands of the potentials of advection-diffusion and heat equations are obtained.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2119
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttps://arxiv.org/abs/0911.0443
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherCubature of integral operatorseng
dc.subject.othermultivariate approximationeng
dc.subject.otherseparated representationeng
dc.titleOn the fast computation of high dimensional volume potentialseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections