Spaces of Riemannian metrics

dc.bibliographicCitation.seriesTitleSnapshots of Modern Mathematics from Oberwolfacheng
dc.bibliographicCitation.volume10/2017
dc.contributor.authorBustamante, Mauricio
dc.contributor.authorKordaß, Jan-Bernhard
dc.date.accessioned2022-08-05T07:45:31Z
dc.date.available2022-08-05T07:45:31Z
dc.date.issued2017
dc.description.abstractRiemannian metrics endow smooth manifolds such as surfaces with intrinsic geometric properties, for example with curvature. They also allow us to measure quantities like distances, angles and volumes. These are the notions we use to characterize the "shape" of a manifold. The space of Riemannian metrics is a mathematical object that encodes the many possible ways in which we can geometrically deform the shape of a manifold.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9886
dc.identifier.urihttp://dx.doi.org/10.34657/8924
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH
dc.relation.doihttps://doi.org/10.14760/SNAP-2017-010-EN
dc.relation.essn2626-1995
dc.rights.licenseCC BY-SA 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/eng
dc.subject.ddc510
dc.subject.otherGeometry and Topologyeng
dc.titleSpaces of Riemannian metricseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent11 S.
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2017-10.pdf
Size:
426.07 KB
Format:
Adobe Portable Document Format
Description: