Tensor representations of q(∞)
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2016-09 | |
dc.contributor.author | Merino, Bernardo González | |
dc.contributor.author | Henze, Matthias | |
dc.date.available | 2019-06-28T08:17:25Z | |
dc.date.issued | 2016 | |
dc.description.abstract | We introduce a symmetric monoidal category of modules over the direct limit queer superalgebra q(1). The category can be dened in two equivalent ways with the aid of the large annihilator condition. Tensor products of copies of the natural and the conatural representations are injective objects in this category. We obtain the socle ltrations and formulas for the tensor products of the indecomposable injectives. In addition, it is proven that the category is Koszul self-dual. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3298 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3126 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2016-09 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Tensor representations of q(∞) | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2016_09.pdf
- Size:
- 468.24 KB
- Format:
- Adobe Portable Document Format
- Description: