On the containment problem

dc.bibliographicCitation.seriesTitleSnapshots of Modern Mathematics from Oberwolfacheng
dc.bibliographicCitation.volume3/2016
dc.contributor.authorSzemberg, Tomasz
dc.contributor.authorSzpond, Justyna
dc.date.accessioned2022-08-04T14:24:52Z
dc.date.available2022-08-04T14:24:52Z
dc.date.issued2016
dc.description.abstractMathematicians routinely speak two languages: the language of geometry and the language of algebra. When translating between these languages, curves and lines become sets of polynomials called “ideals”. Often there are several possible translations. Then the mystery is how these possible translations relate to each other. We present how geometry itself gives insights into this question.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9864
dc.identifier.urihttp://dx.doi.org/10.34657/8902
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH
dc.relation.doihttps://doi.org/10.14760/SNAP-2016-003-EN
dc.relation.essn2626-1995
dc.rights.licenseCC BY-SA 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/eng
dc.subject.ddc510
dc.subject.otherAlgebra and Number Theoryeng
dc.titleOn the containment problemeng
dc.typeReporteng
dc.typeTexteng
dcterms.extent12 S.
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2016-03.pdf
Size:
437.55 KB
Format:
Adobe Portable Document Format
Description: