Search Results

Now showing 1 - 2 of 2
  • Item
    The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations
    (München : European Geopyhsical Union, 2007) Weber, S.L.; Drijfhout, S.S.; Abe-Ouchi, A.; Crucifix, M.; Eby, M.; Ganopolski, A.; Murakami, S.; Otto-Bliesner, B.; Peltier, W.R.
    This study analyses the response of the Atlantic meridional overturning circulation (AMOC) to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40%) during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%). It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.
  • Item
    Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity
    (München : European Geopyhsical Union, 2013) Eby, M.; Weaver, A.J.; Alexander, K.; Zickfeld, K.; Abe-Ouchi, A.; Cimatoribus, A.A.; Crespin, E.; Drijfhout, S.S.; Edwards, N.R.; Eliseev, A.V.; Feulner, G.; Fichefet, T.; Forest, C.E.; Goosse, H.; Holden, P.B.; Joos, F.; Kawamiya, M.; Kicklighter, D.; Kienert, H.; Matsumoto, K.; Mokhov, I.I.; Monier, E.; Olsen, S.M.; Pedersen, J.O.P.; Perrette, M.; Philippon-Berthier, G.; Ridgwell, A.; Schlosser, A.; Schneider von Deimling, T.; Shaffer, G.; Smith, R.S.; Spahni, R.; Sokolov, A.P.; Steinacher, M.; Tachiiri, K.; Tokos, K.; Yoshimori, M.; Zeng, N.; Zhao, F.
    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.