Search Results

Now showing 1 - 2 of 2
  • Item
    Ultrafast high-resolution mass spectrometric finger pore imaging in latent finger prints
    (London : Nature Publishing Group, 2014) Elsner, C.; Abel, B.
    Latent finger prints (LFPs) are deposits of sweat components in ridge and groove patterns, left after human fingers contact with a surface. Being important targets in biometry and forensic investigations they contain more information than topological patterns. With laser desorption mass spectrometry imaging (LD-MSI) we record 'three-dimensional' finger prints with additional chemical information as the third dimension. Here we show the potential of fast finger pore imaging (FPI) in latent finger prints employing LD-MSI without a classical matrix in a high-spatial resolution mode. Thin films of gold rapidly sputtered on top of the sample are used for desorption. FPI employing an optical image for rapid spatial orientation and guiding of the desorption laser enables the rapid analysis of individual finger pores, and the chemical composition of their excretions. With this approach we rapidly detect metabolites, drugs, and characteristic excretions from the inside of the human organism by a minimally-invasive strategy, and distinguish them from chemicals in contact with fingers without any labeling. The fast finger pore imaging, analysis, and screening approach opens the door for a vast number of novel applications in such different fields as forensics, doping and medication control, therapy, as well as rapid profiling of individuals.
  • Item
    The influence of the Δk280 mutation and N- or C-terminal extensions on the structure, dynamics, and fibril morphology of the tau R2 repeat
    (London [u.a.] : Royal Society of Chemistry, 2014) Raz, Y.; Adler, J.; Vogel, A.; Scheidt, H.A.; Häupl, T.; Abel, B.; Huster, D.; Miller, Y.
    Tau is a microtubule-associated protein and is involved in microtubule assembly and stabilization. It consists of four repeats that bind to the microtubule. The ΔK280 deletion mutation in the tau R2 repeat region is directly associated with the development of the frontotemporal dementia parkinsonism linked to chromosome 17 (FTDP-17). This deletion mutation is known to accelerate tau R2 repeat aggregation. However, the secondary and the tertiary structures of the self-assembled ΔK280 tau R2 repeat mutant aggregates are still controversial. Moreover, it is unclear whether extensions by one residue in the N- or the C-terminus of this mutant can influence the secondary or the tertiary structure. Herein, we combine solid-state NMR, atomic force microscopy, electron microscopy and all-atom explicit molecular dynamics simulations to investigate the effects of the deletion mutation and the N- and the C-terminal extension of this mutant on the structure. Our main findings show that the deletion mutation induces the formation of small aggregates, such as oligomers, and reduces the formation of fibrils. However, the extensions in the N- or the C-terminus revealed more fibril formation than small aggregates. Further, in the deletion mutation only one structure is preferred, while the N- and the C-terminal extensions strongly lead to polymorphic states. Finally, our broad and combined experimental and computational techniques provide direct structural information regarding ΔK280 tau R2 repeat mutant aggregates and their extensions in the N- and C-terminii by one residue.