Search Results

Now showing 1 - 4 of 4
  • Item
    Mineral dust in Central Asia: Combining lidar and other measurements during the Central Asian dust experiment (CADEX)
    (Les Ulis : EDP Sciences, 2018) Althausen, Dietrich; Hofer, Julian; Abdullaev, Sabur; Makhmudov, Abduvosit; Baars, Holger; Engelmann, Ronny; Wadinga Fomba, Khanneh; Müller, Konrad; Schettler, Georg; Klüser, Lars; Kandler, Konrad; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Mineral dust needs to be characterized comprehensively since it contributes to the climate change in Tajikistan / Central Asia. Lidar results from the measurements of mineral dust during CADEX are compared with results of sun photometer measurements, satellite-based measurements, and chemical analysis of ground samples. Although the dust is often advected from far-range sources, it impacts on the local conditions considerably.
  • Item
    Mineral dust in central Asia: 18-month lidar measurements in Tajikistan during the central Asian dust experiment (CADEX)
    (Les Ulis : EDP Sciences, 2018) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit; Nazarov, Bakhron I.; Schettler, Georg; Fomba, K.Wadinga; Müller, Konrad; Heinold, Bernd; Baars, Holger; Engelmann, Ronny; Ansmann, Albert; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Tajikistan is often affected by atmospheric mineral dust. The direct and indirect radiative effects of dust play a sensitive role in the climate system in Central Asia. The Central Asian Dust Experiment (CADEX) provides first lidar measurements in Tajikistan. The autonomous multiwavelength polarization Raman lidar PollyXT was operated for 1.5 years (2015/16) in Dushanbe. In spring, lofted layers of long-range transported dust and in summer/ autumn, lower laying dust from local or regional sources with large optical thicknesses occurred.
  • Item
    Triple-wavelength lidar observations of the linear depolarization ratio of dried marine particles
    (Les Ulis : EDP Sciences, 2018) Haarig, Moritz; Ansmann, Albert; Baars, Holger; Engelmann, Ronny; Althausen, Dietrich; Bohlmann, Stephanie; Gasteiger, Josef; Farrell, David; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    For aerosol typing with lidar, sea salt particles are usually assumed to be spherical with a consequently low depolarization ratio. Evidence of dried marine particles at the top of the humid marine aerosol layer with a depolarization ratio up to 0.1 has been found at predominately maritime locations on Barbados and in the Southern Atlantic. The depolarization ratio for these probably cubic sea salt particles has been measured at three wavelengths (355, 532 and 1064 nm) simultaneously for the first time and compared to model simulations.
  • Item
    Wild fire aerosol optical properties measured by lidar at Haifa, Israel
    (Les Ulis : EDP Sciences, 2018) Heese, Birgit; Hofer, Julian; Baars, Holger; Engelmann, Ronny; Althausen, Dietrich; Schechner, Yoav Y.; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Optical properties of fresh biomass burning aerosol were measured by lidar during the wild fires in Israel in November 2016. A single-wavelength lidar Polly was operated at the Technion Campus at Haifa. The detector with originally two channels at 532 and 607 nm was recently upgraded with a cross- and a co-polarised channel at 532 nm, and a rotational Raman channel at 530.2 nm. Preliminary results show high particle depolarisation ratios probably caused by soil dust and large fly-ash particles.