Search Results

Now showing 1 - 2 of 2
  • Item
    Dust mobilization and transport in the northern Sahara during SAMUM 2006 - A meteorological overview
    (Milton Park : Taylor & Francis, 2017) Knippertz, Peter; Ansmann, Albert; Althausen, Dietrich; Müller, Detlef; Tesche, Matthias; Bierwirth, Eike; Dinter, Tilman; Müller, Thomas; Von Hoyningen-Huene, Wolfgang; Schepanski, Kerstin; Wendisch, Manfred; Heinold, Bernd; Kandler, Konrad; Petzold, Andreas; Tegen, Ina
    The SAMUM field campaign in southern Morocco in May/June 2006 provides valuable data to study the emission, and the horizontal and vertical transports of mineral dust in the Northern Sahara. Radiosonde and lidar observations show differential advection of air masses with different characteristics during stable nighttime conditions and up to 5-km deep vertical mixing in the strongly convective boundary layer during the day. Lagrangian and synoptic analyses of selected dust periods point to a topographic channel from western Tunisia to central Algeria as a dust source region. Significant emission events are related to cold surges from the Mediterranean in association with eastward passing upper-level waves and lee cyclogeneses south of the Atlas Mountains. Other relevant events are local emissions under a distinct cut-off low over northwestern Africa and gust fronts associated with dry thunderstorms over the Malian and Algerian Sahara. The latter are badly represented in analyses from the European Centre for Medium–Range Weather Forecasts and in a regional dust model, most likely due to problems with moist convective dynamics and a lack of observations in this region. This aspect needs further study. The meteorological source identification is consistent with estimates of optical and mineralogical properties of dust samples.
  • Item
    Vertical profiling of convective dust plumes in southern Morocco during SAMUM
    (Milton Park : Taylor & Francis, 2017) Ansmann, Albert; Tesche, Matthias; Knippertz, Peter; Bierwirth, Eike; Althausen, Dietrich; Müller, Detlef; Schulz, Oliver
    Lifting of dust particles by dust devils and convective plumes may significantly contribute to the global mineral dust budget. During the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006 vertical profiling of dusty plumes was performed for the first time. Polarization lidar observations taken at Ouarzazate (30.9◦N, 6.9◦W, 1133 m height above sea level) are analyzed. Two cases with typical and vigorous formation of convective plumes and statistical results of 5 d are discussed. The majority of observed convective plumes have diameters on order of 100–400 m. Most of the plumes (typically 50–95%) show top heights <1 km or 0.3DLH with the Saharan dust layer height DLH of typically 3–4 km. Height-to-diameter ratio is mostly 2–10. Maximum plume top height ranges from 1.1 to 2.9 km on the 5 d. 5–26 isolated plumes and clusters of plumes per hour were detected. A low dust optical depth (<0.3) favours plume evolution. Observed surface, 1 and 2–m air temperatures indicate that a difference of 17–20 K between surface and 2-m air temperature and of 0.9–1 K between the 1 and 2-m temperatures are required before convective plumes develop. Favourable horizontal wind speeds are 2–7 ms−1.