Search Results

Now showing 1 - 2 of 2
  • Item
    Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe
    (Amsterdam [u.a.] : Elsevier Science, 2019) Groenestein, C.M.; Hutchings, N.J.; Haenel, H.D.; Amon, B.; Menzi, H.; Mikkelsen, M.H.; Misselbrook, T.H.; van Bruggen, C.; Kupper, T.; Webb, J.
    The increasing global demand for food and the environmental effects of reactive nitrogen losses in the food production chain, increase the need for efficient use of nitrogen (N). Of N harvested in agricultural plant products, 80% is used to feed livestock. Because the largest atmospheric loss of reactive nitrogen from livestock production systems is ammonia (NH3), the focus of this paper is on N lost as NH3 during the production of animal protein. The focus of this paper is to understand the key factors explaining differences in Nitrogen Use Efficiency (NUE) of animal production among various European countries. Therefore we developed a conceptual framework to describe the NUE defined as the amount of animal-protein N per N in feed and NH3–N losses in the production of milk, beef, pork, chicken meat and eggs in The Netherlands, Switzerland, United Kingdom, Germany, Austria and Denmark. The framework describes how manure management and animal-related parameters (feed, metabolism) relate to NH3 emissions and NUE. The results showed that the animal product with the lowest NUE had the largest NH3 emissions and vice versa, which agrees with the reciprocal relationship between NUE and NH3 within the conceptual framework. Across animal products for the countries considered, about 20% of the N in feed is lost as NH3. The significant smallest proportion (12%) of NH3–N per unit of Nfeed is from chicken production. The proportions for other products are 17%, 19%, 20% and 22% for milk, pork, eggs and beef respectively. These differences were not significantly different due to the differences among countries. For all countries, NUE was lowest for beef and highest for chicken. The production of 1 kg N in beef required about 5 kg N in feed, of which 1 kg N was lost as NH3–N. For the production of 1 kg N in chicken meat, 2 kg N in feed was required and 0.2 kg was lost as NH3. The production of 1 kg N in milk required 4 kg N in feed with 0.6 kg NH3–N loss, the same as pork and eggs, but those needed 3 and 3.5 kg N in feed per kg N in product respectively. Except for beef, the differences among these European countries were mainly caused by differences in manure management practices and their emission factors, rather than by animal-related factors including feed and digestibility influencing the excreted amount of ammoniacal N (TAN). For beef, both aspects caused important differences. Based on the results, we encourage the expression of N losses as per N in feed or per N in product, in addition to per animal place, when comparing production efficiency and NUE. We consider that disaggregating emission factors into a diet/animal effect and a manure management effect would improve the basis for comparing national NH3 emission inventories. © 2018 The Authors
  • Item
    N 2 O emissions and NO 3 − leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Kasper, M.; Foldal, C.; Kitzler, B.; Haas, E.; Strauss, P.; Eder, A.; Zechmeister-Boltenstern, S.; Amon, B.
    National emission inventories for UN FCCC reporting estimate regional soil nitrous oxide (N 2 O) fluxes by considering the amount of N input as the only influencing factor for N 2 O emissions. Our aim was to deepen the understanding of N 2 O fluxes from agricultural soils, including region specific soil and climate properties into the estimation of emission to find targeted mitigation measures for the reduction of nitrogen losses and GHG emissions. Within this project, N 2 O emissions and nitrate (NO 3 − ) leaching were modelled under spatially distinct environmental conditions in two agricultural regions in Austria taking into account region specific soil and climatic properties, management practices and crop rotations. The LandscapeDNDC ecosystem model was used to calculate N 2 O emissions and NO 3 − leaching reflecting different types of vegetation, management operations and crop rotations. In addition, N input and N fluxes were assessed and N 2 O emissions were calculated. This approach allowed identifying hot spots of N 2 O emissions. Results show that certain combinations of soil type, weather conditions, crop and management can lead to high emissions. Mean values ranged from 0.15 to 1.29 kg N 2 O–N ha −1  year −1 (Marchfeld) and 0.26 to 0.52 kg N 2 O–N ha −1  year −1 (Grieskirchen). Nitrate leaching, which strongly dominated N-losses, often reacted opposite to N 2 O emissions. Larger quantities of NO 3 − were lost during years of higher precipitation, especially if winter barley was cultivated on sandy soils. Taking into account the detected hot spots of N 2 O emissions and NO 3 − leaching most efficient measures can be addressed to mitigate environmental impacts while maximising crop production. © 2018, The Author(s).