Search Results

Now showing 1 - 7 of 7
  • Item
    Seasonal variability of heterogeneous ice formation in stratiform clouds over the Amazon Basin
    (Hoboken, NJ : Wiley, 2014) Seifert, Patric; Kunz, Clara; Baars, Holger; Ansmann, Albert; Bühl, Johannes; Senf, Fabian; Engelmann, Ronny; Althausen, Dietrich; Artaxo, Paulo
    Based on 11months of polarization lidar observations in the Amazon Basin near Manaus, Brazil (2.3°S, 60°W), the relationship between temperature and heterogeneous ice formation efficiency in stratiform clouds was evaluated in the cloud top temperature range between -40 and 0°C. Between -30 and 0°C, ice-containing clouds are a factor of 1.5 to 2 more frequent during the dry season. Free-tropospheric aerosol backscatter profiles revealed a twofold to tenfold increase in aerosol load during the dry season and a Monitoring Atmospheric Composition and Climate - Interim Implementation reanalysis data set implies that the aerosol composition during the dry season is strongly influenced by biomass burning aerosol, whereas other components such as mineral dust do not vary strongly between the seasons. The injection of smoke accompanied by the likely dispersion of biological material, soil dust, or ash particles was identified as a possible source for the increased ice formation efficiency during the dry season. Key Points A unique 1year stratiform cloud data set was obtained for the Amazon Basin During the dry season, ice forms more efficient than during the wet season Biomass burning aerosols must be the source of ice nuclei during the dry season.
  • Item
    Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction
    (Katlenburg-Lindau : European Geosciences Union, 2021) Engelmann, Ronny; Ansmann, Albert; Ohneiser, Kevin; Griesche, Hannes; Radenz, Martin; Hofer, Julian; Althausen, Dietrich; Dahlke, Sandro; Maturilli, Marion; Veselovskii, Igor; Jimenez, Cristofer; Wiesen, Robert; Baars, Holger; Bühl, Johannes; Gebauer, Henriette; Haarig, Moritz; Seifert, Patric; Wandinger, Ulla; Macke, Andreas
    An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition to continuously monitor aerosol and cloud layers in the central Arctic up to 30gkm height. The expedition lasted from September 2019 to October 2020 and measurements were mostly taken between 85 and 88.5ggN. The lidar was integrated into a complex remote-sensing infrastructure aboard the Polarstern. In this article, novel lidar techniques, innovative concepts to study aerosol-cloud interaction in the Arctic, and unique MOSAiC findings will be presented. The highlight of the lidar measurements was the detection of a 10gkm deep wildfire smoke layer over the North Pole region between 7-8gkm and 17-18gkm height with an aerosol optical thickness (AOT) at 532gnm of around 0.1 (in October-November 2019) and 0.05 from December to March. The dual-wavelength Raman lidar technique allowed us to unambiguously identify smoke as the dominating aerosol type in the aerosol layer in the upper troposphere and lower stratosphere (UTLS). An additional contribution to the 532gnm AOT by volcanic sulfate aerosol (Raikoke eruption) was estimated to always be lower than 15g%. The optical and microphysical properties of the UTLS smoke layer are presented in an accompanying paper . This smoke event offered the unique opportunity to study the influence of organic aerosol particles (serving as ice-nucleating particles, INPs) on cirrus formation in the upper troposphere. An example of a closure study is presented to explain our concept of investigating aerosol-cloud interaction in this field. The smoke particles were obviously able to control the evolution of the cirrus system and caused low ice crystal number concentration. After the discussion of two typical Arctic haze events, we present a case study of the evolution of a long-lasting mixed-phase cloud layer embedded in Arctic haze in the free troposphere. The recently introduced dual-field-of-view polarization lidar technique was applied, for the first time, to mixed-phase cloud observations in order to determine the microphysical properties of the water droplets. The mixed-phase cloud closure experiment (based on combined lidar and radar observations) indicated that the observed aerosol levels controlled the number concentrations of nucleated droplets and ice crystals.
  • Item
    Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020 : optical thickness, lidar ratios, and depolarization ratios at 355 and 532nm
    (Katlenburg-Lindau : EGU, 2020) Ohneiser, Kevin; Ansmann, Albert; Baars, Holger; Seifert, Patric; Barja, Boris; Jimenez, Cristofer; Radenz, Martin; Teisseire, Audrey; Floutsi, Athina; Haarig, Moritz; Foth, Andreas; Chudnovsky, Alexandra; Engelmann, Ronny; Zamorano, Félix; Bühl, Johannes; Wandinger, Ulla
    We present particle optical properties of stratospheric smoke layers observed with multiwavelength polarization Raman lidar over Punta Arenas (53.2∘ S, 70.9∘ W), Chile, at the southernmost tip of South America in January 2020. The smoke originated from the record-breaking bushfires in Australia. The stratospheric aerosol optical thickness reached values up to 0.85 at 532 nm in mid-January 2020. The main goal of this rapid communication letter is to provide first stratospheric measurements of smoke extinction-to-backscatter ratios (lidar ratios) and particle linear depolarization ratios at 355 and 532 nm wavelengths. These aerosol parameters are important input parameters in the analysis of spaceborne CALIPSO and Aeolus lidar observations of the Australian smoke spreading over large parts of the Southern Hemisphere in January and February 2020 up to heights of around 30 km. Lidar and depolarization ratios, simultaneously measured at 355 and 532 nm, are of key importance regarding the homogenization of the overall Aeolus (355 nm wavelength) and CALIPSO (532 nm wavelength) lidar data sets documenting the spread of the smoke and the decay of the stratospheric perturbation, which will be observable over the entire year of 2020. We found typical values and spectral dependencies of the lidar ratio and linear depolarization ratio for aged stratospheric smoke. At 355 nm, the lidar ratio and depolarization ratio ranged from 53 to 97 sr (mean 71 sr) and 0.2 to 0.26 (mean 0.23), respectively. At 532 nm, the lidar ratios were higher (75–112 sr, mean 97 sr) and the depolarization ratios were lower with values of 0.14–0.22 (mean 0.18). The determined depolarization ratios for aged Australian smoke are in very good agreement with respective ones for aged Canadian smoke, observed with lidar in stratospheric smoke layers over central Europe in the summer of 2017. The much higher 532 nm lidar ratios, however, indicate stronger absorption by the Australian smoke particles.
  • Item
    The HD(CP)2 Observational Prototype Experiment (HOPE) - An overview
    (Katlenburg-Lindau : EGU, 2017) Macke, Andreas; Seifert, Patric; Baars, Holger; Barthlott, Christian; Beekmans, Christoph; Behrendt, Andreas; Bohn, Birger; Brueck, Matthias; Bühl, Johannes; Crewell, Susanne; Damian, Thomas; Deneke, Hartwig; Düsing, Sebastian; Foth, Andreas; Di Girolamo, Paolo; Hammann, Eva; Heinze, Rieke; Hirsikko, Anne; Kalisch, John; Kalthoff, Norbert; Kinne, Stefan; Kohler, Martin; Löhnert, Ulrich; Madhavan, Bomidi Lakshmi; Maurer, Vera; Muppa, Shravan Kumar; Schween, Jan; Serikov, Ilya; Siebert, Holger; Simmer, Clemens; Späth, Florian; Steinke, Sandra; Träumner, Katja; Trömel, Silke; Wehner, Birgit; Wieser, Andreas; Wulfmeyer, Volker; Xie, Xinxin
    The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns.

    HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface.

    HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal.

    First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.
  • Item
    Wildfire smoke triggers cirrus formation: Lidar observations over the eastern Mediterranean
    (Katlenburg-Lindau : EGU, 2023) Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Ohneiser, Kevin; Knopf, Daniel A.; Nisantzi, Argyro; Bühl, Johannes; Engelmann, Ronny; Skupin, Annett; Seifert, Patric; Baars, Holger; Ene, Dragos; Wandinger, Ulla; Hadjimitsis, Diofantos
    The number of intense wildfires may increase further in upcoming years as a consequence of climate change. It is therefore necessary to improve our knowledge about the role of smoke in the climate system, with emphasis on the impact of smoke particles on the evolution of clouds, precipitation, and cloud radiative properties. Presently, one key aspect of research is whether or not wildfire smoke particles can initiate cirrus formation. In this study, we present lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020, when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. We found strong evidence that aged smoke (organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from -47 to -53° C and caused the formation of extended cirrus layers. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2-3km thick smoke layer was, however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations used as starting values, gravity wave simulations show that the lofting of air by 100-200m is sufficient to initiate significant ice nucleation on the smoke particles, leading to ice crystal number concentrations of 1-100L-1.
  • Item
    Automated time–height-resolved air mass source attribution for profiling remote sensing applications
    (Katlenburg-Lindau : EGU, 2021) Radenz, Martin; Seifert, Patric; Baars, Holger; Floutsi, Athena Augusta; Yin, Zhenping; Bühl, Johannes
    Height-resolved air mass source attribution is crucial for the evaluation of profiling ground-based remote sensing observations, especially when using lidar (light detection and ranging) to investigate different aerosol types throughout the atmosphere. Lidar networks, such as EARLINET (European Aerosol Research Lidar Network) in the frame of ACTRIS (Aerosol, Clouds and Trace Gases), observe profiles of optical aerosol properties almost continuously, but usually, additional information is needed to support the characterization of the observed particles. This work presents an approach explaining how backward trajectories or particle positions from a dispersion model can be combined with geographical information (a land cover classification and manually defined areas) to obtain a continuous and vertically resolved estimate of an air mass source above a certain location. Ideally, such an estimate depends on as few as possible a priori information and auxiliary data. An automated framework for the computation of such an air mass source is presented, and two applications are described. First, the air mass source information is used for the interpretation of air mass sources for three case studies with lidar observations from Limassol (Cyprus), Punta Arenas (Chile) and ship-borne off Cabo Verde. Second, air mass source statistics are calculated for two multi-week campaigns to assess potential observation biases of lidar-based aerosol statistics. Such an automated approach is a valuable tool for the analysis of short-term campaigns but also for long-term data sets, for example, acquired by EARLINET.
  • Item
    Lidar/radar approach to quantify the dust impact on ice nucleation in mid and high level clouds
    (Les Ulis : EDP Sciences, 2019) Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Bühl, Johannes; Seifert, Patric; Engelmann, Ronny; Nisantzi, Agyro; Hofer, Julian; Baars, Holger
    We present the first attempt of a closure experiment regarding the relationship between ice nucleating particle concentration (INPC) and ice crystal number concentration (ICNC), solely based on active remote sensing. The approach combines aerosol and cloud observations with polarization lidar, Doppler lidar, and cloud radar. Several field campaigns were conducted on the island of Cyprus in the Eastern Mediterranean from 2015-2018 to study heterogeneous ice formation in altocumulus and cirrus layers embedded in Saharan dust. A case study observed on 10 April 2017 is discussed in this contribution. © 2019 The Authors, published by EDP Sciences.