Search Results

Now showing 1 - 2 of 2
  • Item
    Important role of stratospheric injection height for the distribution and radiative forcing of smoke aerosol from the 2019–2020 Australian wildfires
    (Katlenburg-Lindau : EGU, 2022) Heinold, Bernd; Baars, Holger; Barja, Boris; Christensen, Matthew; Kubin, Anne; Ohneiser, Kevin; Schepanski, Kerstin; Schutgens, Nick; Senf, Fabian; Schrödner, Roland; Villanueva, Diego; Tegen, Ina
    More than 1 Tg smoke aerosol was emitted into the atmosphere by the exceptional 2019–2020 southeastern Australian wildfires. Triggered by the extreme fire heat, several deep pyroconvective events carried the smoke directly into the stratosphere. Once there, smoke aerosol remained airborne considerably longer than in lower atmospheric layers. The thick plumes traveled eastward, thereby being distributed across the high and mid-latitudes in the Southern Hemisphere, enhancing the atmospheric opacity. Due to the increased atmospheric lifetime of the smoke plume, its radiative effect increased compared to smoke that remains in lower altitudes. Global models describing aerosol-climate impacts lack adequate descriptions of the emission height of aerosols from intense wildfires. Here, we demonstrate, by a combination of aerosol-climate modeling and lidar observations, the importance of the representation of those high-altitude fire smoke layers for estimating the atmospheric energy budget. Through observation-based input into the simulations, the Australian wildfire emissions by pyroconvection are explicitly prescribed to the lower stratosphere in different scenarios. Based on our simulations, the 2019–2020 Australian fires caused a significant top-of-atmosphere (TOA) hemispheric instantaneous direct radiative forcing signal that reached a magnitude comparable to the radiative forcing induced by anthropogenic absorbing aerosol. Up to +0.50 W m−2 instantaneous direct radiative forcing was modeled at TOA, averaged for the Southern Hemisphere (+0.25 W m−2 globally) from January to March 2020 under all-sky conditions. At the surface, on the other hand, an instantaneous solar radiative forcing of up to −0.81 W m−2 was found for clear-sky conditions, with the respective estimates depending on the model configuration and subject to the model uncertainties in the smoke optical properties. Since extreme wildfires are expected to occur more frequently in the rapidly changing climate, our findings suggest that high-altitude wildfire plumes must be adequately considered in climate projections in order to obtain reasonable estimates of atmospheric energy budget changes.
  • Item
    Estimation of cloud condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE experiments
    (Katlenburg-Lindau : EGU, 2020) Genz, Christa; Schrödner, Roland; Heinold, Bernd; Henning, Silvia; Baars, Holger; Spindler, Gerald; Tegen, Ina
    Atmospheric aerosol particles are the precondition for the formation of cloud droplets and therefore have large influence on the microphysical and radiative properties of clouds. In this work, four different methods to derive or measure number concentrations of cloud condensation nuclei (CCN) were analyzed and compared for presentday aerosol conditions: (i) a model parameterization based on simulated particle concentrations, (ii) the same parameterization based on gravimetrical particle measurements, (iii) direct CCN measurements with a CCN counter, and (iv) lidarderived and in situ measured vertical CCN profiles. In order to allow for sensitivity studies of the anthropogenic impact, a scenario to estimate the maximum CCN concentration under peak aerosol conditions of the mid-1980s in Europe was developed as well. In general, the simulations are in good agreement with the observations. At ground level, average values between 0.7 and 1:5 × 109 CCNm-3 at a supersaturation of 0.2 % were found with the different methods under present-day conditions. The discrimination of the chemical species revealed an almost equal contribution of ammonium sulfate and ammonium nitrate to the total number of CCN for present-day conditions. This was not the case for the peak aerosol scenario, in which it was assumed that no ammonium nitrate was formed while large amounts of sulfate were present, consuming all available ammonia during ammonium sulfate formation. The CCN number concentration at five different supersaturation values has been compared to the measurements. The discrepancies between model and in situ observations were lowest for the lowest (0.1 %) and highest supersaturations (0.7 %). For supersaturations between 0.3 % and 0.5 %, the model overestimated the potentially activated particle fraction by around 30 %. By comparing the simulation with observed profiles, the vertical distribution of the CCN concentration was found to be overestimated by up to a factor of 2 in the boundary layer. The analysis of the modern (year 2013) and the peak aerosol scenario (expected to be representative of the mid-1980s over Europe) resulted in a scaling factor, which was defined as the quotient of the average vertical profile of the peak aerosol and present-day CCN concentration. This factor was found to be around 2 close to the ground, increasing to around 3.5 between 2 and 5 km and approaching 1 (i.e., no difference between present-day and peak aerosol conditions) with further increasing height. © 2020 Author(s).