Search Results

Now showing 1 - 3 of 3
  • Item
    Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter
    (Katlenburg-Lindau : European Geosciences Union, 2021) Kezoudi, Maria; Tesche, Matthias; Smith, Helen; Tsekeri, Alexandra; Baars, Holger; Dollner, Maximilian; Estellés, Víctor; Bühl, Johannes; Weinzierl, Bernadett; Ulanowski, Zbigniew; Müller, Detlef; Amiridis, Vassilis
    This paper presents measurements of mineral dust concentration in the diameter range from 0.4 to 14.0 µm with a novel balloon-borne optical particle counter, the Universal Cloud and Aerosol Sounding System (UCASS). The balloon launches were coordinated with ground-based active and passive remote-sensing observations and airborne in situ measurements with a research aircraft during a Saharan dust outbreak over Cyprus from 20 to 23 April 2017. The aerosol optical depth at 500 nm reached values up to 0.5 during that event over Cyprus, and particle number concentrations were as high as 50 cm−3 for the diameter range between 0.8 and 13.9 µm. Comparisons of the total particle number concentration and the particle size distribution from two cases of balloon-borne measurements with aircraft observations show reasonable agreement in magnitude and shape despite slight mismatches in time and space. While column-integrated size distributions from balloon-borne measurements and ground-based remote sensing show similar coarse-mode peak concentrations and diameters, they illustrate the ambiguity related to the missing vertical information in passive sun photometer observations. Extinction coefficient inferred from the balloon-borne measurements agrees with those derived from coinciding Raman lidar observations at height levels with particle number concentrations smaller than 10 cm−3 for the diameter range from 0.8 to 13.9 µm. An overestimation of the UCASS-derived extinction coefficient of a factor of 2 compared to the lidar measurement was found for layers with particle number concentrations that exceed 25 cm−3, i.e. in the centre of the dust plume where particle concentrations were highest. This is likely the result of a variation in the refractive index and the shape and size dependency of the extinction efficiency of dust particles along the UCASS measurements. In the future, profile measurements of the particle number concentration and particle size distribution with the UCASS could provide a valuable addition to the measurement capabilities generally used in field experiments that are focussed on the observation of coarse aerosols and clouds.
  • Item
    EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product
    (Katlenburg-Lindau : EGU, 2019) Proestakis, Emmanouil; Amiridis, Vassilis; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Szkop, Artur; Muñoz Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Liberti, Gian Luigi; Baars, Holger; Mattis, Ina; Stachlewska, Iwona Sylwia; Voudouri, Kalliopi Artemis; Mona, Lucia; Mylonaki, Maria; Perrone, Maria Rita; Costa, Maria João; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Pauly, Rebecca; Engelmann, Ronny; Abdullaev, Sabur; Pappalardo, Gelsomina
    We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1%, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3%. © Author(s) 2019.
  • Item
    Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
    (Katlenburg-Lindau : EGU, 2020) Costa-Surós, Montserrat; Sourdeval, Odran; Acquistapace, Claudia; Baars, Holger; Carbajal Henken, Cintia; Genz, Christa; Hesemann, Jonas; Jimenez, Cristofer; König, Marcel; Kretzschmar, Jan; Madenach, Nils; Meyer, Catrin I.; Schrödner, Roland; Seifert, Patric; Senf, Fabian; Brueck, Matthias; Cioni, Guido; Engels, Jan Frederik; Fieg, Kerstin; Gorges, Ksenia; Heinze, Rieke; Kumar Siligam, Pavan; Burkhardt, Ulrike; Crewell, Susanne; Hoose, Corinna; Seifert, Axel; Tegen, Ina; Quaas, Johannes
    Clouds and aerosols contribute the largest uncertainty to current estimates and interpretations of the Earth's changing energy budget. Here we use a new-generation large-domain large-eddy model, ICON-LEM (ICOsahedral Non-hydrostatic Large Eddy Model), to simulate the response of clouds to realistic anthropogenic perturbations in aerosols serving as cloud condensation nuclei (CCN). The novelty compared to previous studies is that (i) the LEM is run in weather prediction mode and with fully interactive land surface over a large domain and (ii) a large range of data from various sources are used for the detection and attribution. The aerosol perturbation was chosen as peak-aerosol conditions over Europe in 1985, with more than fivefold more sulfate than in 2013. Observational data from various satellite and ground-based remote sensing instruments are used, aiming at the detection and attribution of this response. The simulation was run for a selected day (2 May 2013) in which a large variety of cloud regimes was present over the selected domain of central Europe. It is first demonstrated that the aerosol fields used in the model are consistent with corresponding satellite aerosol optical depth retrievals for both 1985 (perturbed) and 2013 (reference) conditions. In comparison to retrievals from groundbased lidar for 2013, CCN profiles for the reference conditions were consistent with the observations, while the ones for the 1985 conditions were not. Similarly, the detection and attribution process was successful for droplet number concentrations: the ones simulated for the 2013 conditions were consistent with satellite as well as new ground-based lidar retrievals, while the ones for the 1985 conditions were outside the observational range. For other cloud quantities, including cloud fraction, liquid water path, cloud base altitude and cloud lifetime, the aerosol response was small compared to their natural vari ability. Also, large uncertainties in satellite and ground-based observations make the detection and attribution difficult for these quantities. An exception to this is the fact that at a large liquid water path value (LWP > 200 g m-2), the control simulation matches the observations, while the perturbed one shows an LWP which is too large. The model simulations allowed for quantifying the radiative forcing due to aerosol-cloud interactions, as well as the adjustments to this forcing. The latter were small compared to the variability and showed overall a small positive radiative effect. The overall effective radiative forcing (ERF) due to aerosol-cloud interactions (ERFaci) in the simulation was dominated thus by the Twomey effect and yielded for this day, region and aerosol perturbation-2:6 W m-2. Using general circulation models to scale this to a global-mean present-day vs. pre-industrial ERFaci yields a global ERFaci of-0:8 W m-2 © 2020 Author(s).