Search Results

Now showing 1 - 6 of 6
  • Item
    Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar
    (Basel : MDPI AG, 2021) Floutsi, Athena Augusta; Baars, Holger; Radenz, Martin; Haarig, Moritz; Yin, Zhenping; Seifert, Patric; Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Barja, Boris; Zamorano, Felix; Wandinger, Ulla
    In this paper, we present long-term observations of the multiwavelength Raman lidar PollyXT conducted in the framework of the DACAPO-PESO campaign. Regardless of the relatively clean atmosphere in the southern mid-latitude oceans region, we regularly observed events of long-range transported smoke, originating either from regional sources in South America or from Australia. Two case studies will be discussed, both identified as smoke events that occurred on 5 February 2019 and 11 March 2019. For the first case considered, the lofted smoke layer was located at an altitude between 1.0 and 4.2 km, and apart from the predominance of smoke particles, particle linear depolarization values indicated the presence of dust particles. Mean lidar ratio values at 355 and 532 nm were 49 ± 12 and 24 ± 18 sr respectively, while the mean particle linear depolarization was 7.6 ± 3.6% at 532 nm. The advection of smoke and dust particles above Punta Arenas affected significantly the available cloud condensation nuclei (CCN) and ice nucleating particles (INP) in the lower troposphere, and effectively triggered the ice crystal formation processes. Regarding the second case, the thin smoke layers were observed at altitudes 5.5–7.0, 9.0 and 11.0 km. The particle linear depolarization ratio at 532 nm increased rapidly with height, starting from 2% for the lowest two layers and increasing up to 9.5% for the highest layer, indicating the possible presence of non-spherical coated soot aggregates. INP activation was effectively facilitated. The long-term analysis of the one year of observations showed that tropospheric smoke advection over Punta Arenas occurred 16 times (lasting from 1 to 17 h), regularly distributed over the period and with high potential to influence cloud formation in the otherwise pristine environment of the region.
  • Item
    Large-eddy simulations over Germany using ICON: A comprehensive evaluation
    (Hoboken, NJ : Wiley, 2017) Heinze, Rieke; Dipankar, Anurag; Henken, Cintia Carbajal; Moseley, Christopher; Sourdeval, Odran; Trömel, Silke; Xie, Xinxin; Adamidis, Panos; Ament, Felix; Baars, Holger; Barthlott, Christian; Behrendt, Andreas; Blahak, Ulrich; Bley, Sebastian; Brdar, Slavko; Brueck, Matthias; Crewell, Susanne; Deneke, Hartwig; Di Girolamo, Paolo; Evaristo, Raquel; Fischer, Jürgen; Frank, Christopher; Friederichs, Petra; Göcke, Tobias; Gorges, Ksenia; Hande, Luke; Hanke, Moritz; Hansen, Akio; Hege, Hans-Christian; Hoose, Corinna; Jahns, Thomas; Kalthoff, Norbert; Klocke, Daniel; Kneifel, Stefan; Knippertz, Peter; Kuhn, Alexander; van Laar, Thriza; Macke, Andreas; Maurer, Vera; Mayer, Bernhard; Meyer, Catrin I.; Muppa, Shravan K.; Neggers, Roeland A.J.; Orlandi, Emiliano; Pantillon, Florian; Pospichal, Bernhard; Röber, Niklas; Scheck, Leonhard; Seifert, Axel; Seifert, Patric; Senf, Fabian; Siligam, Pavan; Simmer, Clemens; Steinke, Sandra; Stevens, Bjorn; Wapler, Kathrin; Weniger, Michael; Wulfmeyer, Volker; Zängl, Günther; Zhangl, Dan; Quaase, Johannes
    Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.
  • Item
    Dual-FOV Raman and Doppler lidar studies of aerosol-cloud interactions: Simultaneous profiling of aerosols, warm-cloud properties, and vertical wind
    (Hoboken, NJ : Wiley, 2014) Schmidt, Jörg; Ansmann, Albert; Bühl, Johannes; Baars, Holger; Wandinger, Ulla; Müller, Detlef; Malinka, Aleksey V.
    For the first time, colocated dual-field of view (dual-FOV) Raman lidar and Doppler lidar observations (case studies) of aerosol and cloud optical and microphysical properties below and within thin layered liquid water clouds are presented together with an updraft and downdraft characterization at cloud base. The goal of this work is to investigate the relationship between aerosol load close to cloud base and cloud characteristics of warm (purely liquid) clouds and the study of the influence of vertical motions and turbulent mixing on this relationship. We further use this opportunity to illustrate the applicability of the novel dual-FOV Raman lidar in this field of research. The dual-FOV lidar combines the well-established multiwavelength Raman lidar technique for aerosol retrievals and the multiple-scattering Raman lidar technique for profiling of the single-scattering extinction coefficient, effective radius, number concentration of the cloud droplets, and liquid water content. Key findings of our 3 year observations are presented in several case studies of optically thin altocumulus layers occurring in the lower free troposphere between 2.5 and 4 km height over Leipzig, Germany, during clean and polluted situations. For the clouds that we observed, the most direct link between aerosol proxy (particle extinction coefficient) and cloud proxy (cloud droplet number concentration) was found at cloud base during updraft periods. Above cloud base, additional processes resulting from turbulent mixing and entrainment of dry air make it difficult to determine the direct impact of aerosols on cloud processes.
  • Item
    Californian Wildfire Smoke Over Europe: A First Example of the Aerosol Observing Capabilities of Aeolus Compared to Ground‐Based Lidar
    (Hoboken, NJ : Wiley, 2021) Baars, Holger; Radenz, Martin; Floutsi, Athena Augusta; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Ansmann, Albert; Flament, Thomas; Dabas, Alain; Trapon, Dimitri; Reitebuch, Oliver; Bley, Sebastian; Wandinger, Ulla
    In September 2020, extremely strong wildfires in the western United States of America (i.e., mainly in California) produced large amounts of smoke, which was lifted into the free troposphere. These biomass-burning-aerosol (BBA) layers were transported from the US west coast toward central Europe within 3–4 days turning the sky milky and receiving high media attention. The present study characterizes this pronounced smoke plume above Leipzig, Germany, using a ground-based multiwavelength-Raman-polarization lidar and the aerosol/cloud product of ESA’s wind lidar mission Aeolus. An exceptional high smoke-AOT >0.4 was measured, yielding to a mean mass concentration of 8 μg m−3. The 355 nm lidar ratio was moderate at around 40–50 sr. The Aeolus-derived backscatter, extinction and lidar ratio profiles agree well with the observations of the ground-based lidar PollyXT considering the fact that Aeolus’ aerosol and cloud products are still preliminary and subject to ongoing algorithm improvements.
  • Item
    Seasonal variability of heterogeneous ice formation in stratiform clouds over the Amazon Basin
    (Hoboken, NJ : Wiley, 2014) Seifert, Patric; Kunz, Clara; Baars, Holger; Ansmann, Albert; Bühl, Johannes; Senf, Fabian; Engelmann, Ronny; Althausen, Dietrich; Artaxo, Paulo
    Based on 11months of polarization lidar observations in the Amazon Basin near Manaus, Brazil (2.3°S, 60°W), the relationship between temperature and heterogeneous ice formation efficiency in stratiform clouds was evaluated in the cloud top temperature range between -40 and 0°C. Between -30 and 0°C, ice-containing clouds are a factor of 1.5 to 2 more frequent during the dry season. Free-tropospheric aerosol backscatter profiles revealed a twofold to tenfold increase in aerosol load during the dry season and a Monitoring Atmospheric Composition and Climate - Interim Implementation reanalysis data set implies that the aerosol composition during the dry season is strongly influenced by biomass burning aerosol, whereas other components such as mineral dust do not vary strongly between the seasons. The injection of smoke accompanied by the likely dispersion of biological material, soil dust, or ash particles was identified as a possible source for the increased ice formation efficiency during the dry season. Key Points A unique 1year stratiform cloud data set was obtained for the Amazon Basin During the dry season, ice forms more efficient than during the wet season Biomass burning aerosols must be the source of ice nuclei during the dry season.
  • Item
    On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
    (Katlenburg-Lindau : Copernicus, 2022) Weger, Michael; Baars, Holger; Gebauer, Henriette; Merkel, Maik; Wiedensohler, Alfred; Heinold, Bernd
    There is a gap between the need for city-wide air-quality simulations considering the intra-urban variability and mircoscale dispersion features and the computational capacities that conventional urban microscale models require. This gap can be bridged by targeting model applications on the gray zone situated between the mesoscale and large-eddy scale. The urban dispersion model CAIRDIO is a new contribution to the class of computational-fluid dynamics models operating in this scale range. It uses a diffuse-obstacle boundary method to represent buildings as physical obstacles at gray-zone resolutions in the order of tens of meters. The main objective of this approach is to find an acceptable compromise between computationally inexpensive grid sizes for spatially comprehensive applications and the required accuracy in the description of building and boundary-layer effects. In this paper, CAIRDIO is applied on the simulation of black carbon and particulate matter dispersion for an entire mid-size city using a uniform horizontal grid spacing of 40gm. For model evaluation, measurements from five operational air monitoring stations representative for the urban background and high-traffic roads are used. The comparison also includes the mesoscale host simulation, which provides the boundary conditions. The measurements show a dominant influence of the mixing layer evolution at background sites, and therefore both the mesoscale and large-eddy simulation (LES) results are in good agreement with the observed air pollution levels. In contrast, at the high-traffic sites the proximity to emissions and the interactions with the building environment lead to a significantly amplified diurnal variability in pollutant concentrations. These urban road conditions can only be reasonably well represented by CAIRDIO while the meosocale simulation indiscriminately reproduces a typical urban-background profile, resulting in a large positive model bias. Remaining model discrepancies are further addressed by a grid-spacing sensitivity study using offline-nested refined domains. The results show that modeled peak concentrations within street canyons can be further improved by decreasing the horizontal grid spacing down to 10gm, but not beyond. Obviously, the default grid spacing of 40gm is too coarse to represent the specific environment within narrow street canyons. The accuracy gains from the grid refinements are still only modest compared to the remaining model error, which to a large extent can be attributed to uncertainties in the emissions. Finally, the study shows that the proposed gray-scale modeling is a promising downscaling approach for urban air-quality applications. The results, however, also show that aspects other than the actual resolution of flow patterns and numerical effects can determine the simulations at the urban microscale.