Search Results

Now showing 1 - 5 of 5
  • Item
    Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers
    (Ostrava : VSB - Technical University of Ostrava and University of Zilina Faculty of Electrical Engineering, 2017) Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Unger, Sonja; Schwuchow, Anka; Elsmann, Tino; Dellith, Jan; Aichele, Claudia; Fatobene Ando, Ron; Bartelt, Hartmut
    We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.
  • Item
    Independently tunable dual-wavelength fiber oscillator with synchronized pulsed emission based on a theta ring cavity and a fiber Bragg grating array
    (Washington D.C. : Optical Society of America, 2017) Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias
    We present a fiber-integrated laser enabling independent tuning of two emission wavelengths with a synchronized pulsed emission. The discrete tuning concept comprises a theta cavity fiber laser (TCFL), a fiber Bragg grating (FBG) array as a versatile spectral filter, facilitating tailored tuning ranges, and optical gating to control the emission spectrum. A novel electrical driving scheme uniquely enables independently tunable multi-wavelength emission from a single laser oscillator. Tunable dual-wavelength emission is experimentally investigated with a ytterbium (Yb)-doped TCFL using an FBG array with 11 gratings. Over a tuning range of 25 nm, 55 wavelength pairs have been demonstrated with high signal contrast (≈ 40 dB) and narrow linewidth (< 40GHz). Based on the demands of prospective applications, pulse synchronicity is studied with a fiber-based time-delay spectrometer (TDS) simultaneously measuring the joint temporal and spectral pulse properties down to a single-pulse analysis. Accordingly, tunable and fully synchronized dual-wavelength emissions have been verified by driving the TCFL with optimized electrical gating parameters. This unique operation mode achieved in a cost-efficient fiber-integrated laser design targets novel applications e.g. in nonlinear spectroscopy and biophotonics.
  • Item
    Yb-doped large mode area fiber for beam quality improvement using local adiabatic tapers with reduced dopant diffusion
    (Washington D.C. : Optical Society of America, 2018) Zhu, Yuan; Leich, Martin; Lorenz, Martin; Eschrich, Tina; Aichele, Claudia; Kobelke, Jens; Bartelt, Hartmut; Jäger, Matthias
    A newly designed all-solid step-index Yb-doped aluminosilicate large mode area fiber for achieving high peak power at near diffraction limited beam quality with local adiabatic tapering is presented. The 45µm diameter fiber core and pump cladding consist of active/passively doped aluminosilicate glass produced by powder sinter technology (REPUSIL). A deliberate combination of innovative cladding and core materials was aspired to achieve low processing temperature reducing dopant diffusion during fiber fabrication, tapering and splicing. By developing a short adiabatic taper, robust seed coupling is achieved by using this Yb-doped LMA fiber as final stage of a nanosecond fiber Master Oscillator Power Amplifier (MOPA) system while maintaining near diffraction limited beam quality by preferential excitation of the fundamental mode. After application of a fiber-based endcap, the peak power could be scaled up to 375 kW with high beam quality and a measured M2 value of 1.3~1.7.A newly designed all-solid step-index Yb-doped aluminosilicate large mode area fiber for achieving high peak power at near diffraction limited beam quality with local adiabatic tapering is presented. The 45µm diameter fiber core and pump cladding consist of active/passively doped aluminosilicate glass produced by powder sinter technology (REPUSIL). A deliberate combination of innovative cladding and core materials was aspired to achieve low processing temperature reducing dopant diffusion during fiber fabrication, tapering and splicing. By developing a short adiabatic taper, robust seed coupling is achieved by using this Yb-doped LMA fiber as final stage of a nanosecond fiber Master Oscillator Power Amplifier (MOPA) system while maintaining near diffraction limited beam quality by preferential excitation of the fundamental mode. After application of a fiber-based endcap, the peak power could be scaled up to 375 kW with high beam quality and a measured M2 value of 1.3~1.7.
  • Item
    Multimode Fabry-Perot Interferometer Probe based on Vernier Effect for Enhanced Temperature Sensing
    (Basel : MDPI, 2019) Gomes, André D.; Becker, Martin; Dellith, Jan; Zibaii, Mohammad Ismail; Latifi, Hamid; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry–Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry–Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry–Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry–Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of −654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.
  • Item
    Optical Harmonic Vernier Effect: A New Tool for High Performance Interferometric Fiber Sensors
    (Basel : MDPI AG, 2019) Gomes, André D.; Ferreira, Marta S.; Bierlich, Jörg; Kobelke, Jens; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    The optical Vernier effect magnifies the sensing capabilities of an interferometer, allowing for unprecedented sensitivities and resolutions to be achieved. Just like a caliper uses two different scales to achieve higher resolution measurements, the optical Vernier effect is based on the overlap in the responses of two interferometers with slightly detuned interference signals. Here, we present a novel approach in detail, which introduces optical harmonics to the Vernier effect through Fabry–Perot interferometers, where the two interferometers can have very different frequencies in the interferometric pattern. We demonstrate not only a considerable enhancement compared to current methods, but also better control of the sensitivity magnification factor, which scales up with the order of the harmonics, allowing us to surpass the limits of the conventional Vernier effect as used today. In addition, this novel concept opens also new ways of dimensioning the sensing structures, together with improved fabrication tolerances.