Search Results

Now showing 1 - 3 of 3
  • Item
    Yb-doped large mode area fiber for beam quality improvement using local adiabatic tapers with reduced dopant diffusion
    (Washington D.C. : Optical Society of America, 2018) Zhu, Yuan; Leich, Martin; Lorenz, Martin; Eschrich, Tina; Aichele, Claudia; Kobelke, Jens; Bartelt, Hartmut; Jäger, Matthias
    A newly designed all-solid step-index Yb-doped aluminosilicate large mode area fiber for achieving high peak power at near diffraction limited beam quality with local adiabatic tapering is presented. The 45µm diameter fiber core and pump cladding consist of active/passively doped aluminosilicate glass produced by powder sinter technology (REPUSIL). A deliberate combination of innovative cladding and core materials was aspired to achieve low processing temperature reducing dopant diffusion during fiber fabrication, tapering and splicing. By developing a short adiabatic taper, robust seed coupling is achieved by using this Yb-doped LMA fiber as final stage of a nanosecond fiber Master Oscillator Power Amplifier (MOPA) system while maintaining near diffraction limited beam quality by preferential excitation of the fundamental mode. After application of a fiber-based endcap, the peak power could be scaled up to 375 kW with high beam quality and a measured M2 value of 1.3~1.7.A newly designed all-solid step-index Yb-doped aluminosilicate large mode area fiber for achieving high peak power at near diffraction limited beam quality with local adiabatic tapering is presented. The 45µm diameter fiber core and pump cladding consist of active/passively doped aluminosilicate glass produced by powder sinter technology (REPUSIL). A deliberate combination of innovative cladding and core materials was aspired to achieve low processing temperature reducing dopant diffusion during fiber fabrication, tapering and splicing. By developing a short adiabatic taper, robust seed coupling is achieved by using this Yb-doped LMA fiber as final stage of a nanosecond fiber Master Oscillator Power Amplifier (MOPA) system while maintaining near diffraction limited beam quality by preferential excitation of the fundamental mode. After application of a fiber-based endcap, the peak power could be scaled up to 375 kW with high beam quality and a measured M2 value of 1.3~1.7.
  • Item
    Multimode Fabry-Perot Interferometer Probe based on Vernier Effect for Enhanced Temperature Sensing
    (Basel : MDPI, 2019) Gomes, André D.; Becker, Martin; Dellith, Jan; Zibaii, Mohammad Ismail; Latifi, Hamid; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry–Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry–Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry–Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry–Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of −654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.
  • Item
    Optical Harmonic Vernier Effect: A New Tool for High Performance Interferometric Fiber Sensors
    (Basel : MDPI AG, 2019) Gomes, André D.; Ferreira, Marta S.; Bierlich, Jörg; Kobelke, Jens; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    The optical Vernier effect magnifies the sensing capabilities of an interferometer, allowing for unprecedented sensitivities and resolutions to be achieved. Just like a caliper uses two different scales to achieve higher resolution measurements, the optical Vernier effect is based on the overlap in the responses of two interferometers with slightly detuned interference signals. Here, we present a novel approach in detail, which introduces optical harmonics to the Vernier effect through Fabry–Perot interferometers, where the two interferometers can have very different frequencies in the interferometric pattern. We demonstrate not only a considerable enhancement compared to current methods, but also better control of the sensitivity magnification factor, which scales up with the order of the harmonics, allowing us to surpass the limits of the conventional Vernier effect as used today. In addition, this novel concept opens also new ways of dimensioning the sensing structures, together with improved fabrication tolerances.