Search Results

Now showing 1 - 7 of 7
  • Item
    Intra-cavity measurement concept of dispersion properties with a tunable fiber-integrated laser
    (Philadelphia, Pa. : IOP Publ., 2019) Tiess, Tobias; Hartung, Alexander; Becker, Martin; Chojetzki, Christoph; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias
    The dispersion properties of fibers depict a key characteristic to model the propagation of ultra-short pulses in waveguides. In the following, a new method is presented to directly measure the dispersion properties of fibers and optical components in the time domain. The analysis is based on pulse shape variations along the tuning range of a theta cavity fiber laser (TCFL) depending on the adjusted repetition rate. The automated measurement procedure, evaluating pulse symmetry, achieves a temporal sensitivity below 5 ps surpassing the resolution of the acquisition electronics. Exemplarily, two samples of Nufern PM980-XP fiber are investigated with an Yb-doped tunable TCFL retrieving the mean dispersion parameter D? by comparative measurements. The obtained results are compared to a reference method based on spectral interferometry. With deviations in D? between either approach of 0.3% and 1.3%, respectively, the results agree well within the measurement errors of the TCFL, verifying the presented concept. Due to the pulse formation process extending over multiple round trips, this approach achieves an enhanced sensitivity compared to competing direct temporal methods. Together with an alignment free operation, the fiber-integrated TCFL depicts a simple and robust concept showing potential in specific measurement scenarios such as in quality management. © 2019 Astro Ltd.
  • Item
    Bunimovich Stadium-like Microsphere for Randomized Fiber Laser Operation
    (Basel : MDPI, 2018) Silveira, Beatriz; Gomes, André D.; Becker, Martin; Schneidewind, Henrik; Frazão, Orlando
    A silica resonator was demonstrated for random laser generation. The resonator consisted of a conventional microsphere fabricated in an optical fiber tip through electric arc discharge, and modifications to its geometry were carried out to create asymmetry inside the silica structure. The resulting Bunimovich stadium-like microsphere promotes multiple reflections with the boundaries, following the stochastic properties of dynamic billiards. The interference of the multiple scattered beams generates a random signal whose intensity was increased by sputter-coating the microstadium with a gold thin film. The random signal is amplified using an erbium-doped fiber amplifier (EDFA) in a ring cavity configuration with feedback, and lasing is identified as temporal and spectral random variations of the signal between consecutive measurements.
  • Item
    Thermal tuning of a fiber-integrated Fabry-Pérot cavity
    (Washington, DC : Soc., 2021) Singer, Clemens; Goetz, Alexander; Prasad, Adarsh S.; Becker, Martin; Rothhardt, Manfred; Skoff, Sarah M.
    Here, we present the thermal tuning capability of an alignment-free, fiber-integrated Fabry-Pérot cavity. The two mirrors are made of fiber Bragg gratings that can be individually temperature stabilized and tuned. We show the temperature tuning of the resonance wavelength of the cavity without any degradation of the finesse and the tuning of the individual stop bands of the fiber Bragg gratings. This not only permits for the cavity’s finesse to be optimized post-fabrication but also makes this cavity applicable as a narrowband filter with a FWHM spectral width of 0.07 ± 0.02 pm and a suppression of more than -15 dB that can be wavelength tuned. Further, in the field of quantum optics, where strong light-matter interactions are desirable, quantum emitters can be coupled to such a cavity and the cavity effect can be reversibly omitted and re-established. This is particularly useful when working with solid-state quantum emitters where such a reference measurement is often not possible once an emitter has been permanently deposited inside a cavity.
  • Item
    Two-Step-Model of Photosensitivity in Cerium-doped Fibers
    (Washington D.C. : Optical Society of America, 2019) Elsmann, Tino; Becker, Martin; Olusoji, Olugbenga; Unger, Sonja; Wondraczek, Katrin; Aichele, Claudia; Lindner, Florian; Schwuchow, Anka; Nold, Johannes; Rothhardt, Manfred
    The photosensitivity of various cerium-doped fibers has been experimentally investigated for both excimer- and femtosecond-laser illumination. The results of single-pulse, few-pulse and multi-pulse inscription of fiber-Bragg-gratings with both laser systems and the thermal aging of those gratings demonstrated the restrictions of the conventional color center model for cerium-doped fibers. To explain the short-term stability of single-pulse gratings against long-term stability of multi-pulse gratings, an extension into a two-step-model was deduced.
  • Item
    Nanofiber-based high-Q microresonator for cryogenic applications
    (Washington, DC : Soc., 2020) Hütner, Johanna; Hoinkes, Thomas; Becker, Martin; Rothhardt, Manfred; Rauschenbeute, Arno; Skoff, Sarah M.
    We demonstrate a cryo-compatible, fully fiber-integrated, alignment-free optical microresonator. The compatibility with low temperatures expands its possible applications to the wide field of solid-state quantum optics, where a cryogenic environment is often a requirement. At a temperature of 4.6 K we obtain a quality factor of (9.9 ± 0.7) × 106. In conjunction with the small mode volume provided by the nanofiber, this cavity can be either used in the coherent dynamics or the fast cavity regime, where it can provide a Purcell factor of up to 15. Our resonator is therefore suitable for significantly enhancing the coupling between light and a large variety of different quantum emitters and due to its proven performance over a wide temperature range, also lends itself for the implementation of quantum hybrid systems. © 2020 OSA - The Optical Society. All rights reserved.
  • Item
    Independently tunable dual-wavelength fiber oscillator with synchronized pulsed emission based on a theta ring cavity and a fiber Bragg grating array
    (Washington D.C. : Optical Society of America, 2017) Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias
    We present a fiber-integrated laser enabling independent tuning of two emission wavelengths with a synchronized pulsed emission. The discrete tuning concept comprises a theta cavity fiber laser (TCFL), a fiber Bragg grating (FBG) array as a versatile spectral filter, facilitating tailored tuning ranges, and optical gating to control the emission spectrum. A novel electrical driving scheme uniquely enables independently tunable multi-wavelength emission from a single laser oscillator. Tunable dual-wavelength emission is experimentally investigated with a ytterbium (Yb)-doped TCFL using an FBG array with 11 gratings. Over a tuning range of 25 nm, 55 wavelength pairs have been demonstrated with high signal contrast (≈ 40 dB) and narrow linewidth (< 40GHz). Based on the demands of prospective applications, pulse synchronicity is studied with a fiber-based time-delay spectrometer (TDS) simultaneously measuring the joint temporal and spectral pulse properties down to a single-pulse analysis. Accordingly, tunable and fully synchronized dual-wavelength emissions have been verified by driving the TCFL with optimized electrical gating parameters. This unique operation mode achieved in a cost-efficient fiber-integrated laser design targets novel applications e.g. in nonlinear spectroscopy and biophotonics.
  • Item
    Multimode Fabry-Perot Interferometer Probe based on Vernier Effect for Enhanced Temperature Sensing
    (Basel : MDPI, 2019) Gomes, André D.; Becker, Martin; Dellith, Jan; Zibaii, Mohammad Ismail; Latifi, Hamid; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry–Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry–Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry–Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry–Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of −654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.