Search Results

Now showing 1 - 10 of 10
  • Item
    Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice
    (Weinheim : Wiley-VCH, 2021) Clemen, Ramona; Freund, Eric; Mrochen, Daniel; Miebach, Lea; Schmidt, Anke; Rauch, Bernhard H.; Lackmann, Jan‐Wilm; Martens, Ulrike; Wende, Kristian; Lalk, Michael; Delcea, Mihaela; Bröker, Barbara M.; Bekeschus, Sander
    Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
  • Item
    Medical Gas Plasma—A Potent ROS-Generating Technology for Managing Intraoperative Bleeding Complications
    (Basel : MDPI, 2022) Miebach, Lea; Poschkamp, Broder; van der Linde, Julia; Bekeschus, Sander
    Cold medical gas plasmas are under pre-clinical investigation concerning their hemostatic activity and could be applied for intra-operative bleeding control in the future. The technological leap innovation was their generation at body temperature, thereby causing no thermal harm to the tissue and ensuring tissue integrity. This directly contrasts with current techniques such as electrocautery, which induces hemostasis by carbonizing the tissue using a heated electrode. However, the necrotized tissue is prone to fall, raising the risk of post-operative complications such as secondary bleedings or infection. In recent years, various studies have reported on the ability of medical gas plasmas to induce blood coagulation, including several suggestions concerning their mode of action. As non-invasive and gentle hemostatic agents, medical gas plasmas could be particularly eligible for vulnerable tissues, e.g., colorectal surgery and neurosurgery. Further, their usage could be beneficial regarding the prevention of post-operative bleedings due to the absence or sloughing of eschar. However, no clinical trials or individual healing attempts for medical gas plasmas have been reported to pave the way for clinical approvement until now, despite promising results in experimental animal models. In this light, the present mini-review aims to emphasize the potential of medical gas plasmas to serve as a hemostatic agent in clinical procedures. Providing a detailed overview of the current state of knowledge, feasible application fields are discussed, and possible obstacles are addressed.
  • Item
    Plasma Medicine Technologies
    (Basel : MDPI, 2021) Kaushik, Nagendra Kumar; Bekeschus, Sander; Tanaka, Hiromasa; Lin, Abraham; Choi, Eun Ha
    This Special Issue, entitled “Plasma Medicine Technologies”, covers the latest remarkable developments in the field of plasma bioscience and medicine. Plasma medicine is an interdisciplinary field that combines the principles of plasma physics, material science, bioscience, and medicine, towards the development of therapeutic strategies. A study on plasma medicine has yielded the development of new treatment opportunities in medical and dental sciences. An important aspect of this issue is the presentation of research underlying new therapeutic methods that are useful in medicine, dentistry, sterilization, and, in the current scenario, that challenge perspectives in biomedical sciences. This issue is focused on basic research on the characterization of the bioplasma sources applicable to living cells, especially to the human body, and fundamental research on the mutual interactions between bioplasma and organic–inorganic liquids, and bio or nanomaterials.
  • Item
    Lack of Adverse Effects of Cold Physical Plasma-Treated Blood from Leukemia Patients: A Proof-of-Concept Study
    (Basel : MDPI, 2021) Golpour, Monireh; Alimohammadi, Mina; Mohseni, Alireza; Zaboli, Ehsan; Sohbatzadeh, Farshad; Bekeschus, Sander; Rafiei, Alireza
    Chronic lymphocytic leukemia (CLL) is the most common blood malignancy with multiple therapeutic challenges. Cold physical plasma has been considered a promising approach in cancer therapy in recent years. In this study, we aimed to evaluate the cytotoxic effect of cold plasma or plasma-treated solutions (PTS) on hematologic parameters in the whole blood of CLL patients. The mean red blood cell count, white blood cell (WBC) count, platelet and hemoglobin counts, and peripheral blood smear images did not significantly differ between treated and untreated samples in either CLL or healthy individuals. However, both direct plasma and indirect PTS treatment increased lipid peroxidation and RNS deposition in the whole blood of CLL patients and in healthy subjects. In addition, the metabolic activity of WBCs was decreased with 120 s of cold plasma or PTS treatment after 24 h and 48 h. However, cold plasma and PTS treatment did not affect the prothrombin time, partial thromboplastin time, nor hemolysis in either CLL patients or in healthy individuals. The present study identifies the components of cold plasma to reach the blood without disturbing the basic parameters important in hematology, confirming the idea that the effect of cold plasma may not be limited to solid tumors and possibly extends to hematological disorders. Further cellular and molecular studies are needed to determine which cells in CLL patients are targeted by cold plasma or PTS.
  • Item
    Low-Dose Oxidant Toxicity and Oxidative Stress in Human Papillary Thyroid Carcinoma Cells K1
    (Basel : MDPI, 2022) Lens, Hannah Hamada Mendonça; Lopes, Natália Medeiros Dias; Pasqual-Melo, Gabriella; Marinello, Poliana Camila; Miebach, Lea; Cecchini, Rubens; Bekeschus, Sander; Cecchini, Alessandra Lourenço
    Medical gas plasmas are of emerging interest in pre-clinical oncological research. Similar to an array of first-line chemotherapeutics and physics-based therapies already approved for clinical application, plasmas target the tumor redox state by generating a variety of highly reactive species eligible for local tumor treatments. Considering internal tumors with limited accessibility, medical gas plasmas help to enrich liquids with stable, low-dose oxidants ideal for intratumoral injection and lavage. Pre-clinical investigation of such liquids in numerous tumor entities and models in vitro and in vivo provided evidence of their clinical relevance, broadening the range of patients that could benefit from medical gas plasma therapy in the future. Likewise, the application of such liquids might be promising for recurrent BRAF(V600E) papillary thyroid carcinomas, resistant to adjuvant administration of radioiodine. From a redox biology point of view, studying redox-based approaches in thyroid carcinomas is particularly interesting, as they evolve in a highly oxidative environment requiring the capability to cope with large amounts of ROS/RNS. Knowledge on their behavior under different redox conditions is scarce. The present study aimed to clarify resistance, proliferative activity, and the oxidative stress response of human papillary thyroid cancer cells K1 after exposure to plasma-oxidized DMEM (oxDMEM). Cellular responses were also evaluated when treated with different dosages of hydrogen peroxide and the RNS donor sodium nitroprusside (SNP). Our findings outline plasma-oxidized liquids as a promising approach targeting BRAF(V600E) papillary thyroid carcinomas and extend current knowledge on the susceptibility of cells to undergo ROS/RNS-induced cell death.
  • Item
    Antitumor Effects in Gas Plasma-Treated Patient-Derived Microtissues—An Adjuvant Therapy for Ulcerating Breast Cancer?
    (Basel : MDPI, 2021) Akbari, Zahra; Saadati, Fariba; Mahdikia, Hamed; Freund, Eric; Abbasvandi, Fereshteh; Shokri, Babak; Zali, Hakimeh; Bekeschus, Sander
    Despite global research and continuous improvement in therapy, cancer remains a challenging disease globally, substantiating the need for new treatment avenues. Medical gas plasma technology has emerged as a promising approach in oncology in the last years. Several investigations have provided evidence of an antitumor action in vitro and in vivo, including our recent work on plasma-mediated reduction of breast cancer in mice. However, studies of gas plasma exposure on patient-derived tumors with their distinct microenvironment (TME) are scarce. To this end, we here investigated patient-derived breast cancer tissue after gas plasma-treated ex vivo. The tissues were disjoint to pieces smaller than 100 µm, embedded in collagen, and incubated for several days. The viability of the breast cancer tissue clusters and their outgrowth into their gel microenvironment declined with plasma treatment. This was associated with caspase 3-dependent apoptotic cell death, paralleled by an increased expression of the anti-metastatic adhesion molecule epithelial (E)-cadherin. Multiplex chemokine/cytokine analysis revealed a marked decline in the release of the interleukins 6 and 8 (IL-6, IL-8) and monocyte-chemoattractant-protein 1 (MCP) known to promote a cancer-promoting milieu in the TME. In summary, we provide here, for the first time, evidence of a beneficial activity of gas plasma exposure on human patient-derived breast cancer tissue.
  • Item
    Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo
    ([London] : Macmillan Publishers Limited, 2017) Liedtke, Kim Rouven; Bekeschus, Sander; Kaeding, André; Hackbarth, Christine; Kuehn, Jens-Peter; Heidecke, Claus-Dieter; von Bernstorff, Wolfram; von Woedtke, Thomas; Partecke, Lars Ivo
    Pancreatic cancer is associated with a high mortality rate. In advanced stage, patients often experience peritoneal carcinomatosis. Using a syngeneic murine pancreatic cancer cell tumor model, the effect of non-thermal plasma (NTP) on peritoneal metastatic lesions was studied. NTP generates reactive species of several kinds which have been proven to be of relevance in cancer. In vitro, exposure to both plasma and plasma-treated solution significantly decreased cell viability and proliferation of 6606PDA cancer cells, whereas mouse fibroblasts were less affected. Repeated intraperitoneal treatment of NTP-conditioned medium decreased tumor growth in vivo as determined by magnetic resonance imaging, leading to reduced tumor mass and improved median survival (61 vs 52 days; p < 0.024). Tumor nodes treated by NTP-conditioned medium demonstrated large areas of apoptosis with strongly inhibited cell proliferation. Contemporaneously, no systemic effects were found. Apoptosis was neither present in the liver nor in the gut. Also, the concentration of different cytokines in splenocytes or blood plasma as well as the distribution of various hematological parameters remained unchanged following treatment with NTP-conditioned medium. These results suggest an anticancer role of NTP-treated solutions with little to no systemic side effects being present, making NTP-treated solutions a potential complementary therapeutic option for advanced tumors.
  • Item
    Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen
    (London : Nature Publishing Group, 2021) Miebach, Lea; Freund, Eric; Horn, Stefan; Niessner, Felix; Sagwal, Sanjeev Kumar; von Woedtke, Thomas; Emmert, Steffen; Weltmann, Klaus-Dieter; Clemen, Ramona; Schmidt, Anke; Gerling, Torsten; Bekeschus, Sander
    Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
  • Item
    Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017-6-5) Bekeschus, Sander; Wende, Kristian; Hefny, Mohamed Mokhtar; Rödder, Katrin; Jablonowski, Helena; Schmidt, Anke; Woedtke, Thomas von; Weltmann, Klaus-Dieter; Benedikt, Jan
    Cold physical plasma has been suggested as a powerful new tool in oncology. However, some cancer cells such as THP-1 leukaemia cells have been shown to be resistant towards plasma-induced cell death, thereby serving as a good model for optimizing plasmas in order to foster pro-apoptotic anticancer effects. A helium/oxygen radio frequency driven atmospheric plasma profoundly induced apoptosis in THP-1 cells whereas helium, humidified helium, and humidified helium/oxygen plasmas were inefficient. Hydrogen peroxide – previously shown as central plasma-derived agent – did not participate in the killing reaction but our results suggest hypochlorous acid to be responsible for the effect observed. Proteomic analysis of THP-1 cells exposed to He/O2 plasma emphasized a prominent growth retardation, cell stress, apoptosis, and a pro-immunogenic profile. Altogether, a plasma setting that inactivates previously unresponsive leukaemia cells is presented. Crucial reactive species in the plasma and liquid environment were identified and discussed, deciphering the complexity of plasma from the gas phase into the liquid down to the cellular response mechanism. These results may help tailoring plasmas for clinical applications such as oxidation-insensitive types of cancer.
  • Item
    Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018-8-24) Gandhirajan, Rajesh Kumar; Rödder, Katrin; Bodnar, Yana; Pasqual-Melo, Gabriella; Emmert, Steffen; Griguer, Corinne E.; Weltmann, Klaus-Dieter; Bekeschus, Sander
    Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.