Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol

2016-12-2, Andérez-Fernández, María, Vogt, Lydia K., Fischer, Steffen, Zhou, Wei, Jiao, Haijun, Garbe, Marcel, Elangovan, Saravanakumar, Junge, Kathrin, Junge, Henrik, Ludwig, Ralf, Beller, Matthias

For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.

Loading...
Thumbnail Image
Item

Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid

2019, Zhou, Wei, Wei, Zhihong, Spannenberg, Anke, Jiao, Haijun, Junge, Kathrin, Junge, Henrik, Beller, Matthias

Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions. Crucial for catalytic activity is the use of the specific complex 3. Compared to related ruthenium and manganese complexes 7 and 8, this optimal cobalt complex showed improved performance. DFT computations support an innocent non-classical bifunctional outer-sphere mechanism on the triplet state potential energy surface. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Earth-abundant photocatalytic systems for the visible-light-driven reduction of CO2 to CO

2017, Rosas-Hernández, Alonso, Steinlechner, Christoph, Junge, Henrik, Beller, Matthias

Herein, we report a highly selective photocatalytic system, based on an in situ copper photosensitizer and an iron catalyst, for the reduction of CO2 to CO. Turnover numbers (TON) up to 487 (5 h) with selectivities up to 99% and ΦCO = 13.3% were observed. Stern-Volmer analysis allowed us to establish a reductive quenching mechanism between the Cu PS and electron donor.

Loading...
Thumbnail Image
Item

Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction

2019, Marx, Maximilian, Mele, Andrea, Spannenberg, Anke, Steinlechner, Christoph, Junge, Henrik, Schollhammer, Philippe, Beller, Matthias

Reproducibility of photocatalytic reactions, especially when conducted on small scale for improved turnover numbers with in situ formed catalysts can prove challenging. Herein, we showcase the problematic reproducibility on the example of attractive photocatalytic CO2 reduction utilizing [FeFe] hydrogenase mimics. These Fe complexes, well-known for their application in proton reduction reactions, were combined with a heteroleptic Cu photosensitizer and produced CO/H2/HCO2H mixtures of variable constitution. However, the reactions indicated a poor reproducibility, even when conducted with well-defined complexes. Based on our experience, we make suggestions for scientists working in the field of photocatalysis on how to address and report the reproducibility of novel photocatalytic reaction protocols. In addition, we would like to highlight the importance of studying reproducibility of novel reaction protocols, especially in the fields of photocatalytic water splitting and CO2 reduction, where TONs are widely used as the comparable measure for catalytic activity. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines

2016, Cabrero-Antonino, Jose R., Alberico, Elisabetta, Junge, Kathrin, Junge, Henrik, Beller, Matthias

A broad range of secondary and tertiary amides has been hydrogenated to the corresponding amines under mild conditions using an in situ catalyst generated by combining [Ru(acac)3], 1,1,1-tris(diphenylphosphinomethyl)ethane (Triphos) and Yb(OTf)3. The presence of the metal triflate allows to mitigate reaction conditions compared to previous reports thus improving yields and selectivities in the desired amines. The excellent isolated yields of two scale-up experiments corroborate the feasibility of the reaction protocol. Control experiments indicate that, after the initial reduction of the amide carbonyl group, the reaction proceeds through the reductive amination of the alcohol with the amine arising from collapse of the intermediate hemiaminal.

Loading...
Thumbnail Image
Item

Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst

2018, Ryabchuk, Pavel, Agostini, Giovanni, Pohl, Marga-Martina, Lund, Henrik, Agapova, Anastasiya, Junge, Henrik, Junge, Kathrin, Beller, Matthias

Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts.

Loading...
Thumbnail Image
Item

Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese-PNN pincer complex

2017, Papa, Veronica, Cabrero-Antonino, Jose R., Alberico, Elisabetta, Spanneberg, Anke, Junge, Kathrin, Junge, Henrik, Beller, Matthias

Novel well-defined NNP and PNP manganese pincer complexes have been synthetized and fully characterized. The catalyst Mn-2 containing an imidazolyaminolphosphino ligand shows high activity and selectivity in the hydrogenation of a wide range of secondary and tertiary amides to the corresponding alcohols and amines, under relatively mild conditions. For the first time, more challenging substrates like primary aromatic amides including an actual herbicide can also be hydrogenated using this earth-abundant metal-based pincer catalyst.

Loading...
Thumbnail Image
Item

Tetra­carbon­yl[4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline-κ2N,N′]molybdenum(0)

2019, Steinlechner, Christoph, Spannenberg, Anke, Junge, Henrik, Beller, Matthias

In the title compound, [Mo(C10H12N2O)(CO)4], the molybdenum(0) center is surrounded by a bidentate di­imine [4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline] and four carbonyl ligands in a distorted octa­hedral coordination geometry. The di­imine ligand coordinates via the two nitro­gen atoms.