Search Results

Now showing 1 - 10 of 15
  • Item
    Surviving the surf: The tribomechanical properties of the periostracum of Mytilus sp
    (Amsterdam : Elsevier, 2014) Wählisch, Felix C.; Peter, Nicolas J.; Torrents Abad, Oscar; Oliveira, Mariana V.G.; Schneider, Andreas S.; Schmahl, Wolfgang; Griesshaber, Erika; Bennewitz, Roland
    We investigated the friction and wear behavior as well as the mechanical properties of the periostracum of Mytilus sp. Tribological properties were determined with a reciprocal sliding microtribometer, while mechanical characterization was performed using a nanoindenter. Measurements were performed in dry and wet conditions. On the dry periostracum we found a low friction coefficient of 0.078 ± 0.007 on the young parts and a higher one of 0.63 ± 0.02 on the old parts of the shell. Under wet, saline, conditions we only observed one average coefficient of friction of 0.37 ± 0.01. Microscopic ex situ analysis indicated that dry periostracum wore rather rapidly by plowing and fatigue, while it exhibited a high wear resistance when immersed in salt water. The Young’s modulus and hardness of the periostracum were also investigated in both dry and wet conditions. Under dry conditions the Young’s modulus of the periostracum was 8 ± 3 GPa, while under wet conditions it was 0.21 ± 0.05 GPa. The hardness of dry periostracum samples was 353 ± 127 MPa, whereas the hardness of wet samples was 5 ± 2 MPa. It was found that, in the wet state, viscous behavior plays a significant role in the mechanical response of the periostracum. Our results strongly indicate that the periostracum can provide an important contribution to the overall wear resistance of Mytilus sp. shell.
  • Item
    Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)
    (Frankfurt am Main : Beilstein-Institut, 2012) Held, Christian; Seyller, Thomas; Bennewitz, Roland
    Noncontact atomic force microscopy provides access to several complementary signals, such as topography, damping, and contact potential. The traditional presentation of such data sets in adjacent figures or in colour-coded pseudo-three-dimensional plots gives only a qualitative impression. We introduce two-dimensional histograms for the representation of multichannel NC-AFM data sets in a quantitative fashion. Presentation and analysis are exemplified for topography and contact-potential data for graphene grown epitaxially on 6H-SiC(0001), as recorded by Kelvin probe force microscopy in ultrahigh vacuum. Sample preparations by thermal decomposition in ultrahigh vacuum and in an argon atmosphere are compared and the respective growth mechanisms discussed.
  • Item
    Switching adhesion and friction by light using photosensitive guest - host interactions
    (Cambridge : Royal Society of Chemistry, 2015) Blass, Johanna; Bozna, Bianca; Albrecht, Marcel; Krings, Jennifer A.; Ravoo, Bart Jan; Wenz, Gerhard; Bennewitz, Roland
    Friction and adhesion between two β-cyclodextrin functionalized surfaces can be switched reversibly by external light stimuli. The interaction between the cyclodextrin molecules attached to the tip of an atomic force microscope and a silicon wafer surface is mediated by complexation of ditopic azobenzene guest molecules. At the single molecule level, the rupture force of an individual complex is 61 ± 10 pN.
  • Item
    Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation
    (Frankfurt am Main : Beilstein-Institut, 2015) Caron, Arnaud; Bennewitz, Roland
    We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.
  • Item
    Interactions between shape-persistent macromolecules as probed by AFM
    (Frankfurt am Main : Beilstein-Institut, 2017) Blas, Johannes; Brunke, Jessica; Emmerich, Franziska; Cédric, Przybylski; Garamus, Vasil M.; Feoktystov, Artem; Bennewitz, Roland; Wenz, Gerhard; Albrecht, Marcel
    Water-soluble shape-persistent cyclodextrin (CD) polymers with amino-functionalized end groups were prepared starting from diacetylene-modified cyclodextrin monomers by a combined Glaser coupling/click chemistry approach. Structural perfection of the neutral CD polymers and inclusion complex formation with ditopic and monotopic guest molecules were proven by MALDI–TOF and UV–vis measurements. Small-angle neutron and X-ray (SANS/SAXS) scattering experiments confirm the stiffness of the polymer chains with an apparent contour length of about 130 Å. Surface modification of planar silicon wafers as well as AFM tips was realized by covalent bound formation between the terminal amino groups of the CD polymer and a reactive isothiocyanate–silane monolayer. Atomic force measurements of CD polymer decorated surfaces show enhanced supramolecular interaction energies which can be attributed to multiple inclusion complexes based on the rigidity of the polymer backbone and the regular configuration of the CD moieties. Depending on the geometrical configuration of attachment anisotropic adhesion characteristics of the polymer system can be distinguished between a peeling and a shearing mechanism.
  • Item
    Kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr
    (Saarbrücken : Leibniz-Institut für neue Materialien, 2009) Egberts, Philip; Bennewitz, Roland
    The incipient stages of plasticity in KBr single crystals have been examined in ultrahigh vacuum by means of Atomic Force Microscopy and Kelvin Probe Force Microscopy (KPFM). Conducting diamond-coated tips have been used to both indent the crystals and image the resulting plastic deformation. KPFM reveals that edge dislocations intersecting the surface carry a negative charge similar to kinks in surface steps, while screw dislocations show no contrast. Weak topographic features extending in <110> direction from the indentation are identified by atomic-resolution imaging to be pairs of edge dislocations of opposite sign, separated by a distance similar to the indenter radius. They indicate the glide of two parallel {110} planes perpendicular to the surface, a process that allows for a slice of KBr to be pushed away from the indentation site.
  • Item
    Force microscopy of layering and friction in an ionic liquid
    (Bristol : IOP Publishing, 2014) Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip–sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
  • Item
    The role of the backing layer in the mechanical properties of micrometer-scale fibrillar structures
    (Saarbrücken : Leibniz-Institut für Neue Materialien, 2010) Guidoni, Griselda; Schillo, Dominik; Hangen, Ude; Castellanos, Graciela; Arzt, Eduard; McMeeking, Robert; Bennewitz, Roland
    The contact mechanics of a micro-fabricated fibrillar surface structure made of poly(dimethylsiloxane) (PDMS) was studied in this work. The attachment and detachment of individual fibrils to and from a spherical indenter upon approach and retraction are detected as jumps in force and stiffness. A quantitative model describes the jumps in stiffness values by taking into account the deformation of the backing layer. The results emphasize the importance of long-range interactions in the contact mechanics of elastic materials and confirm the concepts underlying the development of fibrillar adhesive materials.
  • Item
    Friction mediated by redox-active supramolecular connector molecules
    (Washington D.C. : American Chemical Society, 2015) Bozna, Bianca L.; Blass, Johanna; Albrecht, Marcel; Hausen, Florian; Wenz, Gerhard; Bennewitz, Roland
    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium−cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2−1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments.
  • Item
    Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation
    (Washington D.C. : American Chemical Society, 2015) Stoyanov, Pantcho; Merz, Rolf; Romero, Pedro A.; Wählisch, Felix C.; Torrents Abad, Oscar; Gralla, Robert; Stemmer, Priska; Kopnarski, Michael; Moseler, Michael; Bennewitz, Roland; Dienwiebel, Martin
    This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten?carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation.