Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Awassi sheep keeping in the Arabic steppe in relation to nitrous oxide emission from soil

2013, Hijazi, Omar, Berg, Werner, Moussa, Samouil, Ammon, Christian, von Bobrutzki, Kristina, Brunsch, Reiner

Sheep husbandry is the main source of income for farmers in arid zones. Increasing sheep production on steppes may increase the greenhouse gas production. The objective of this study was to investigate the nitrous oxide (N2O) emissions from the steppes for Awassi sheep keeping and feed cropping in arid zones such as Syria. The methodology developed by the Intergovernmental Panel on Climate Change (IPCC) was used to estimate N2O emissions. A survey was conducted on 64 farms in Syria to gather data for analysis. Precipitation and crop yield data from 2001 to 2009 were also used for calculation and modelling. Sheep-keeping systems, precipitation, year and the region have significant effects on N2O emissions (p<0.05). Emissions of N2O from lands with extensive, semi-intensive and intensive systems were 0.30 ± 0.093, 0.598± 0.113 and 2.243± 0.187 kg sheep1year1, respectively. Crop production was higher in regions with high precipitation levels, which helped to reduce N2O emissions. Using more residuals of wheat, cotton and soya as feed for sheep in the keeping systems evaluated may decrease the overuse of steppe regions and N2O emissions. Nitrous oxide emissions of N2O from sheep-keeping areas can be reduced by changing sheep-keeping systems and increasing the crop production in arid zones through artificial irrigation.

Loading...
Thumbnail Image
Item

Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn

2016, Hempel, Sabrina, Saha, Chayan Kumer, Fiedler, Merike, Berg, Werner, Hansen, Christiane, Amon, Barbara, Amon, Thomas

Ammonia (NH3) and methane (CH4) emissions from naturally ventilated dairy barns affect the environment and the wellbeing of humans and animals. Our study improves the understanding of the dependency of emission rates on climatic conditions with a particular focus on temperature. Previous investigations of the relation between gas emission and temperature mainly rely on linear regression or correlation analysis. We take up a preceding study presenting a multilinear regressionmodel based onNH3 and CH4 concentration and temperaturemeasurements between 2010 and 2012 in a dairy barn for 360 cows inNorthern Germany.We study scatter plots and non-linear regressionmodels for a subset of these data and show that the linear approximation comes to its limits when large temperature ranges are considered. The functional dependency of the emission rates on temperature differs among the gases. For NH3, the exponential dependency assumed in previous studies was proven. For methane, a parabolic relation was found. The emissions show large daily and annual variations and environmental impact factors like wind and humidity superimpose the temperature dependency but the functional shape in general persists. Complementary to the former insight that high temperature increases emissions, we found that in the case of CH4, also temperatures below 10 C lead to an increase in emissions from ruminal fermentation which is likely to be due to a change in animal activity. The improved prediction of emissions by the novel non-linear model may support more accurate economic and ecological assessments of smart barn concepts.