Search Results

Now showing 1 - 3 of 3
  • Item
    Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
    (Washington, DC : ACS Publ., 2019) Bianchi, Federico; Kurtén, Theo; Riva, Matthieu; Mohr, Claudia; Rissanen, Matti P.; Roldin, Pontus; Berndt, Torsten; Crounse, John D.; Wennberg, Paul O.; Mentel, Thomas F.; Wildt, Jürgen; Junninen, Heikki; Jokinen, Tuija; Kulmala, Markku; Worsnop, Douglas R.; Thornton, Joel A.; Donahue, Neil; Kjaergaard, Henrik G.; Ehn, Mikael
    Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earth's radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research. © 2019 American Chemical Society.
  • Item
    First oxidation products from the reaction of hydroxyl radicals with isoprene for pristine environmental conditions
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Berndt, Torsten; Hyttinen, Noora; Herrmann, Hartmut; Hansel, Armin
    Isoprene, C5H8, inserts about half of the non-methane carbon flux of biogenic origin into the atmosphere. Its degradation is primarily initiated by the reaction with hydroxyl radicals. Here we show experimentally the formation of reactive intermediates and corresponding closed-shell products from the reaction of hydroxyl radicals with isoprene for low nitric oxide and low hydroperoxy radical conditions. Detailed product analysis is achieved by mass spectrometric techniques. Quantum chemical calculations support the usefulness of applied ionization schemes. Observed peroxy radicals are the isomeric HO-C5H8O2 radicals and their isomerization products HO-C5H8(O2)O2, bearing most likely an additional hydroperoxy group, and in traces HO-C5H8(O2)2O2 with two hydroperoxy groups. Main closed-shell products from unimolecular peroxy radical reactions are hydroperoxy aldehydes, C5H8O3, and smaller yield products with the composition C5H8O4 and C4H8O5. Detected signals of C10H18O4, C10H18O6, and C5H10O2 stand for products arising from peroxy radical self- and cross-reactions. © 2019, The Author(s).
  • Item
    Efficient alkane oxidation under combustion engine and atmospheric conditions
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Wang, Zhandong; Ehn, Mikael; Rissanen, Matti P.; Garmash, Olga; Quéléver, Lauriane; Xing, Lili; Monge-Palacios, Manuel; Rantala, Pekka; Donahue, Neil M.; Berndt, Torsten; Sarathy, S. Mani
    Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6–C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.