Search Results

Now showing 1 - 2 of 2
  • Item
    Silane-Mediated Expansion of Domains in Si-Doped κ-Ga2O3 Epitaxy and its Impact on the In-Plane Electronic Conduction
    (Weinheim : Wiley-VCH, 2022) Mazzolini, Piero; Fogarassy, Zsolt; Parisini, Antonella; Mezzadri, Francesco; Diercks, David; Bosi, Matteo; Seravalli, Luca; Sacchi, Anna; Spaggiari, Giulia; Bersani, Danilo; Bierwagen, Oliver; Janzen, Benjamin Moritz; Marggraf, Marcella Naomi; Wagner, Markus R.; Cora, Ildiko; Pécz, Béla; Tahraoui, Abbes; Bosio, Alessio; Borelli, Carmine; Leone, Stefano; Fornari, Roberto
    Unintentionally doped (001)-oriented orthorhombic κ-Ga2O3 epitaxial films on c-plane sapphire substrates are characterized by the presence of ≈ 10 nm wide columnar rotational domains that can severely inhibit in-plane electronic conduction. Comparing the in- and out-of-plane resistance on well-defined sample geometries, it is experimentally proved that the in-plane resistivity is at least ten times higher than the out-of-plane one. The introduction of silane during metal-organic vapor phase epitaxial growth not only allows for n-type Si extrinsic doping, but also results in the increase of more than one order of magnitude in the domain size (up to ≈ 300 nm) and mobility (highest µ ≈ 10 cm2V−1s−1, with corresponding lowest ρ ≈ 0.2 Ωcm). To qualitatively compare the mean domain dimension in κ-Ga2O3 epitaxial films, non-destructive experimental procedures are provided based on X-ray diffraction and Raman spectroscopy. The results of this study pave the way to significantly improved in-plane conduction in κ-Ga2O3 and its possible breakthrough in new generation electronics. The set of cross-linked experimental techniques and corresponding interpretation here proposed can apply to a wide range of material systems that suffer/benefit from domain-related functional properties.
  • Item
    Protection Mechanism against Photocorrosion of GaN Photoanodes Provided by NiO Thin Layers
    (Weinheim : Wiley-VCH, 2020) Kamimura, Jumpei; Budde, Melanie; Bogdanoff, Peter; Tschammer, Carsten; Abdi, Fatwa F.; van de Krol, Roel; Bierwagen, Oliver; Riechert, Henning; Geelhaar, Lutz
    The photoelectrochemical properties of n-type Ga-polar GaN photoelectrodes covered with NiO layers of different thicknesses in the range 0–20 nm are investigated for aqueous solution. To obtain layers of well-defined thickness and high crystal quality, NiO is grown by plasma-assisted molecular-beam epitaxy. Stability tests reveal that the NiO layers suppress photocorrosion. With increasing NiO thickness, the onset of the photocurrent is shifted to more positive voltages and the photocurrent is reduced, especially for low bias potentials, indicating that hole transfer to the electrolyte interface is hindered by thicker NiO layers. Furthermore, cathodic transient spikes are observed under intermittent illumination, which hints at surface recombination processes. These results are inconsistent with the common explanation of the protection mechanism that the band alignment of GaN/NiO enables efficient hole-injection, thus preventing hole accumulation at the GaN surface that would lead to anodic photocorrosion. Interestingly, the morphology of the etch pits as well as further experiments involving the photodeposition of Ag indicate that photocorrosion of GaN photoanodes is related to reductive processes at threading dislocations. Therefore, it is concluded that the NiO layers block the transfer of photogenerated electrons from GaN to the electrolyte interface, which prevents the cathodic photocorrosion. © 2020 The Authors. Solar RRL published by Wiley-VCH GmbH