Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Aerosol Particle and Black Carbon Emission Factors of Vehicular Fleet in Manila, Philippines

2019, Madueño, Leizel, Kecorius, Simonas, Birmili, Wolfram, Müller, Thomas, Simpas, James, Vallar, Edgar, Galvez, Maria Cecilia, Cayetano, Mylene, Wiedensohler, Alfred

Poor air quality has been identified as one of the main risks to human health, especially in developing regions, where the information on physical chemical properties of air pollutants is lacking. To bridge this gap, we conducted an intensive measurement campaign in Manila, Philippines to determine the emission factors (EFs) of particle number (PN) and equivalent black carbon (BC). The focus was on public utility jeepneys (PUJ), equipped with old technology diesel engines, widely used for public transportation. The EFs were determined by aerosol physical measurements, fleet information, and modeled dilution using the Operational Street Pollution Model (OSPM). The results show that average vehicle EFs of PN and BC in Manila is up to two orders of magnitude higher than European emission standards. Furthermore, a PUJ emits up to seven times more than a light-duty vehicles (LDVs) and contribute to more than 60% of BC emission in Manila. Unfortunately, traffic restrictions for heavy-duty vehicles do not apply to PUJs. The results presented in this work provide a framework to help support targeted traffic interventions to improve urban air quality not only in Manila, but also in other countries with a similar fleet composed of old-technology vehicles. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Respiratory tract deposition of inhaled roadside ultrafine refractory particles in a polluted megacity of South-East Asia

2019, Kecorius, Simonas, Madueño, Leizel, Löndahl, Jakob, Vallar, Edgar, Galvez, Maria Cecilia, Idolor, Luisito F., Gonzaga-Cayetano, Mylene, Müller, Thomas, Birmili, Wolfram, Wiedensohler, Alfred

Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM 10 and PM 2.5 measures. © 2019