Search Results

Now showing 1 - 2 of 2
  • Item
    Synthesis and characterization of poly(1,2,3-triazole)s with inherent high sulfur content for optical applications
    (Hoboken, NJ : Wiley, 2023) Mazumder, Kajari; Komber, Hartmut; Bittrich, Eva; Voit, Brigitte; Banerjee, Susanta
    The synthesis of solution-processable sulfur-containing polytriazoles for optoelectronic applications is a relatively less explored domain in polymer research. The synthesis of novel bifunctional (DA) and trifunctional (TA) azido-monomers with inherent high sulfur content and of organo-soluble high refractive index poly(1,2,3-triazole)s using the azido-monomers via Cu(I) assisted click polymerization reactions are reported in this work. The azido-monomers were synthesized by the conversion of previously reported amine-functionalized compounds to azides using azidotrimethylsilane in a polar aprotic solvent. Dialkyne monomers were also synthesized and reacted with the azides to prepare a series of five linear and two hyperbranched poly(1,2,3-triazole)s. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry and thermogravimetric analysis were used to characterize the synthesized polymers. It was also demonstrated that the use of the trifunctional azide in optimized conditions resulted in increased solubility of an otherwise insoluble linear poly(1,2,3-triazole). The optical characterization of the polymers was carried out on thin polymer films with thickness in the nanometer range, which were successfully prepared by spin-coating on silicon wafers. It was found that the increase in the sulfur and aromatic content in the polymer backbone successfully increased the refractive index of the polymers up to 1.743 at 589 nm.
  • Item
    Stretchable Thin Film Mechanical-Strain-Gated Switches and Logic Gate Functions Based on a Soft Tunneling Barrier
    (Weinheim : Wiley-VCH, 2021) Chae, Soosang; Choi, Won Jin; Fotev, Ivan; Bittrich, Eva; Uhlmann, Petra; Schubert, Mathias; Makarov, Denys; Wagner, Jens; Pashkin, Alexej; Fery, Andreas
    Mechanical-strain-gated switches are cornerstone components of material-embedded circuits that perform logic operations without using conventional electronics. This technology requires a single material system to exhibit three distinct functionalities: strain-invariant conductivity and an increase or decrease of conductivity upon mechanical deformation. Herein, mechanical-strain-gated electric switches based on a thin-film architecture that features an insulator-to-conductor transition when mechanically stretched are demonstrated. The conductivity changes by nine orders of magnitude over a wide range of tunable working strains (as high as 130%). The approach relies on a nanometer-scale sandwiched bilayer Au thin film with an ultrathin poly(dimethylsiloxane) elastomeric barrier layer; applied strain alters the electron tunneling currents through the barrier. Mechanical-force-controlled electric logic circuits are achieved by realizing strain-controlled basic (AND and OR) and universal (NAND and NOR) logic gates in a single system. The proposed material system can be used to fabricate material-embedded logics of arbitrary complexity for a wide range of applications including soft robotics, wearable/implantable electronics, human-machine interfaces, and Internet of Things.