Search Results

Now showing 1 - 2 of 2
  • Item
    The Effect of Plasma Treated Water Unit Processes on the Food Quality Characteristics of Fresh-Cut Endive
    (Lausanne : Frontiers Media, 2021-1-27) Schnabel, Uta; Handorf, Oliver; Winter, Hauke; Weihe, Thomas; Weit, Christoph; Schäfer, Jan; Stachowiak, Jörg; Boehm, Daniela; Below, Harald; Bourke, Paula; Ehlbeck, Jörg
    This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide. Fresh-cut endive (Cichorium endivia L.) samples were analyzed for retention of food quality characteristics. Measurements included color, texture, and nitrate quantification. Effects on tissue surface and cell organelles were observed through scanning electron and atomic force microscopy. Overall, the endive quality characteristics were retained by incorporating PTW in the washing process. Furthermore, promising results for color and texture characteristics were observed, which were supported by the microscopic assays of the vegetal tissue. While ion chromatography detected high concentrations of nitrite and nitrate in PTW, these did not affect the nitrate concentration of the lettuce tissue post-processing and were below the concentrations within EU regulations. These results provide a pathway to scale up the industrial application of PTW to improve and retain quality characteristic retention of fresh leafy products, whilst also harnessing the plasma functionalized water as a process intervention for reducing microbial load at multiple points, whether on the food surface, within the process water or on food-processing surfaces.
  • Item
    Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing
    (New York, NY [u.a.] : Elsevier Science, 2021) Schnabel, Uta; Balazinski, Martina; Wagner, Robert; Stachowiak, Jörg; Boehm, Daniela; Andrasch, Mathias; Bourke, Paula; Ehlbeck, Jörg
    The microbiological profiles and responses of native microflora of endive were investigated using a model process line, to establish where a defined PFW should be optimally applied to retain or improve produce microbiological quality. The PFW processes were compared with tap water and ClO2. The antimicrobial efficacy of PFW was quantified by determining the reduction in microbial load, the microbial viability and vitality. Depending on the stage of application of PFW, up to 5 log10-cycles reduction was achieved, accompanied by a reduction of metabolic activity, but not necessarily with a decrease in metabolic vitality. Multiple application (3-step-PFW-application) was more effective than single application (1-step-PFW-application) and PFW showed stronger antimicrobial effect in pre-cleaned endive. High concentrations of nitrite (315 mg l−1) and nitrate (472 mg l−1) in PFW were the main factors for the antimicrobial efficacy of PFW against bacteria. Furthermore, H2O2 and an acidic pH supported the mechanism of action against the endive microflora. These results identify the pathway to scale up successful industrial application of PFW targeting microbiological quality and safety of fresh leafy products.Industrial relevance The safety, quality and shelf life of freshly cut vegetables, e.g. lettuce, are strongly influenced by the microbial load. In addition, the hygienic design of production line, and a good handling/ production practice are indispensable. This study shows that the application of PFW, as a promising non-thermal sanitation technology, enables the inactivation of native microbial contamination on fresh-cut endive depending on the process stage of application. It further describes the impact of PFW on the metabolic activity and metabolic vitality of the lettuce-associated microflora. For higher acceptance, the mechanism of action of PFW was assumed based on previous chemical analyses and compared to the industrial standard of ClO2. The results contribute to the understanding and product-specificity of PFW-induced effects on safety, quality and shelf life of fresh cut lettuce and could be a basis for a possible industrial implementation and complement of common technologies.