Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Self-compression of 120 fs pulses in a white-light filament

2010, Bethge, Jens, Steinmeyer, Günter, Stibenz, Gero, Staudt, Peter, Brée, Carsten, Demircan, Ayhan, Redlin, Harald, Düsterer, Stefan

Self-compression of pulses with >100 fs input pulse duration from a 10 Hz laser system is experimentally demonstrated, with a compression factor of 3.3 resulting in output pulse durations of 35 fs. This measurement substantially widens the range of applicability of this compression method, enabling self-compression of pulsed laser sources that neither exhibit extremely low pulse-to-pulse energy fluctuations nor a particularly clean beam profile. The experimental demonstration is numerically modeled, revealing the exact same mechanisms at work as at shorter input pulse duration. Additionally, the role of controlled beam clipping with an adjustable aperture is numerically substantiated

Loading...
Thumbnail Image
Item

Plasma induced pulse breaking in filamentary self-compression

2009, Brée, Carsten, Demircan, Ayhan, Skupin, Stefan, Berg´e, Luc, Steinmeyer, Günter

A plasma induced temporal break-up in filamentary propagation has recently been identified as one of the key events in the temporal self-compression of femtosecond laser pulses. An analysis of the Nonlinear Schrödinger Equation coupled to a noninstantaneous plasma response yields a set of stationary states. This analysis clearly indicates that the emergence of double-hump, characteristically asymmetric temporal on-axis intensity profiles in regimes where plasma defocusing saturates the optical collapse caused by Kerr self-focusing is an inherent property of the underlying dynamical model.