Search Results

Now showing 1 - 5 of 5
  • Item
    A reduced-order modeling for efficient design study of artificial valve in enlarged ventricular outflow tracts
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Caiazzo, Alfonso; Guibert, Romain; Vignon-Clementel, Irene E.
    A computational approach is proposed for efficient design study of a reducer stent to be percutaneously implanted in enlarged right ventricular outflow tracts (RVOT). The need for such a device is driven by the absence of bovine or artificial valves which could be implanted in these RVOT to replace the absent or incompetent native valve, as is often the case over time after Tetralogy of Fallot repair. Hemodynamics are simulated in the stented RVOT via a reduce order model based on proper orthogonal decomposition (POD), while the artificial valve is modeled as a thin resistive surface. The reduced order model is obtained from the numerical solution on a reference device configuration, then varying the geometrical parameters (diameter) for design purposes. To validate the approach, forces exerted on the valve and on the reducer are monitored, varying with geometrical parameters, and compared with the results of full CFD simulations. Such an approach could also be useful for uncertainty quantification. Device design, percutaneous pulmonary valve replacement, proper orthogonal decomposition (POD), finite element method, blood flow CFD, repaired Tetralogy of Fallot.
  • Item
    A Stokes-consistent backflow stabilization for physiological flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Bertoglio, Cristobal; Caiazzo, Alfonso
    In computational fluid dynamics incoming flow at open boundaries, or emphbackflow, often yields to unphysical instabilities for high Reynolds numbers. It is widely accepted that this is due to the incoming energy arising from the convection term, which cannot be empha priori controlled when the velocity field is unknown at the boundary. In order to improve the robustness of the numerical simulations, we propose a stabilized formulation based on a penalization of the residual of a weak Stokes problem on the open boundary, whose viscous part controls the incoming convective energy, while the inertial term contributes to the kinetic energy. We also present different strategies for the approximation of the boundary pressure gradient, which is needed for defining the stabilization term. The method has the advantage that it does not require neither artificial modifications or extensions of the computational domain. Moreover, it is consistent with the Womersley solution. We illustrate our approach on numerical examples
  • Item
    A tangential regularization method for backflow stabilization in hemodynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Bertoglio, Cristóbal; Caiazzo, Alfonso
    In computational simulations of fluid flows, instabilities at the Neumann boundaries may appear during backflow regime. It is widely accepted that this is due to the incoming energy at the boundary, coming from the convection term, which cannot be controlled when the velocity field is unknown. We propose a stabilized formulation based on a local regularization of the fluid velocity along the tangential directions on the Neumann boundaries. The stabilization term is proportional to the amount of backflow, and does not require any further assumption on the velocity profile. The perfomance of the method is assessed on a twoand three-dimensional Womersley flows, as well as considering a hemodynamic physiological regime in a patient-specific aortic geometry.
  • Item
    Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Blank, Laura; Meneses Rioseco, Ernesto; Wilbrandt, Ulrich; Caiazzo, Alfonso
    Geothermal district heating development has been gaining momentum in Europe with numerous deep geothermal installations and projects currently under development. With the increasing density of geothermal wells, questions related to the optimal and sustainable reservoir exploitation become more and more important. A quantitative understanding of the complex thermo-hydraulic interaction between tightly deployed geothermal wells in heterogeneous temperature and permeability fields is key for a maximum sustainable use of geothermal resources. Motivated by the geological settings of the Upper Jurassic aquifer in the Greater Munich region, we develop a computational model based on finite element analysis and gradient-free optimization to simulate groundwater flow and heat transport in hot sedimentary aquifers, and investigate numerically the optimal positioning and spacing of multi-well systems. Based on our numerical simulations, net energy production from deep geothermal reservoirs in sedimentary basins by smart geothermal multi-well arrangements provides significant amounts of energy to meet heat demand in highly urbanized regions. Our results show that taking into account heterogeneous permeability structures and variable reservoir temperature may drastically affect the results in the optimal configuration. We demonstrate that the proposed numerical framework is able to efficiently handle generic geometrical and geologocal configurations, and can be thus flexibly used in the context of multi-variable optimization problems. Hence, this numerical framework can be used to assess the extractable geothermal energy from heterogeneous deep geothermal reservoirs by the optimized deployment of smart multi-well systems.
  • Item
    Computational modelling and simulation of cancer growth and migration within a 3D heterogeneous tissue: The effects of fibre and vascular structure
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Macnamara, Cicely K.; Caiazzo, Alfonso; Ramis-Conde, Ignacio; Chaplain, Mark A.J.
    The term cancer covers a multitude of bodily diseases, broadly categorised by having cells which do not behave normally. Since cancer cells can arise from any type of cell in the body, cancers can grow in or around any tissue or organ making the disease highly complex. Our research is focused on understanding the specific mechanisms that occur in the tumour microenvironment via mathematical and computational modeling. We present a 3D individual-based model which allows one to simulate the behaviour of, and spatio-temporal interactions between, cells, extracellular matrix fibres and blood vessels. Each agent (a single cell, for example) is fully realised within the model and interactions are primarily governed by mechanical forces between elements. However, as well as the mechanical interactions we also consider chemical interactions, for example, by coupling the code to a finite element solver to model the diffusion of oxygen from blood vessels to cells. The current state of the art of the model allows us to simulate tumour growth around an arbitrary blood-vessel network or along the striations of fibrous tissue.