Search Results

Now showing 1 - 3 of 3
  • Item
    Multistatic Specular Meteor Radar Network in Peru: System Description and Initial Results
    (Malden, Mass. : American Geophysical Union, 2021) Chau, J.L.; Urco, J.M.; Vierinen, J.; Harding, B.J.; Clahsen, M.; Pfeffer, N.; Kuyeng, K.M.; Milla, M.A.; Erickson, P.J.
    The mesosphere and lower thermosphere (MLT) region is dominated globally by dynamics at various scales: planetary waves, tides, gravity waves, and stratified turbulence. The latter two can coexist and be significant at horizontal scales less than 500 km, scales that are difficult to measure. This study presents a recently deployed multistatic specular meteor radar system, SIMONe Peru, which can be used to observe these scales. The radars are positioned at and around the Jicamarca Radio Observatory, which is located at the magnetic equator. Besides presenting preliminary results of typically reported large-scale features, like the dominant diurnal tide at low latitudes, we show results on selected days of spatially and temporally resolved winds obtained with two methods based on: (a) estimation of mean wind and their gradients (gradient method), and (b) an inverse theory with Tikhonov regularization (regularized wind field inversion method). The gradient method allows improved MLT vertical velocities and, for the first time, low-latitude wind field parameters such as horizontal divergence and relative vorticity. The regularized wind field inversion method allows the estimation of spatial structure within the observed area and has the potential to outperform the gradient method, in particular when more detections are available or when fine adaptive tuning of the regularization factor is done. SIMONe Peru adds important information at low latitudes to currently scarce MLT continuous observing capabilities. Results contribute to studies of the MLT dynamics at different scales inherently connected to lower atmospheric forcing and E-region dynamo related ionospheric variability.
  • Item
    Radar Observation of Extreme Vertical Drafts in the Polar Summer Mesosphere
    (Hoboken, NJ : Wiley, 2021) Chau, J.L.; Marino, R.; Feraco, F.; Urco, J.M.; Baumgarten, G.; Lübken, F.‐J.; Hocking, W.K.; Schult, C.; Renkwitz, T.; Latteck, R.
    The polar summer mesosphere is the Earth's coldest region, allowing the formation of mesospheric ice clouds. These ice clouds produce strong polar mesospheric summer echoes (PMSE) that are used as tracers of mesospheric dynamics. Here, we report the first observations of extreme vertical drafts (+/-50 ms [hoch]-1) in the mesosphere obtained from PMSE, characterized by velocities more than five standard deviations larger than the observed vertical wind variability. Using aperture synthesis radar imaging, the observed PMSE morphology resembles a solitary wave in a varicose mode, narrow along propagation (3–4 km) and elongated (>10 km) transverse to propagation direction, with a relatively large vertical extent (~13 km). These spatial features are similar to previously observed mesospheric bores, but we observe only one crest with much larger vertical extent and higher vertical velocities.
  • Item
    Four-Dimensional Quantification of Kelvin-Helmholtz Instabilities in the Polar SummerMesosphere Using Volumetric Radar Imaging
    (Hoboken, NJ : Wiley, 2020) Chau, J.L.; Urco, J.M.; Avsarkisov, V.; Vierinen, J.P.; Latteck, R.; Hall, C.M.; Tsutsumi, M.
    We present and characterize in time and three spatial dimensions a Kelvin-Helmholtz Instability (KHI) event from polar mesospheric summer echoes (PMSE) observed with the Middle Atmosphere Alomar Radar System. We use a newly developed radar imaging mode, which observed PMSE intensity and line of sight velocity with high temporal and angular resolution. The identified KHI event occurs in a narrow layer of 2.4 km thickness centered at 85 km altitude, is elongated along north-south direction, presents separation between billows of ~ 8 km in the east-west direction, and its billow width is ~ 3 km. The accompanying vertical gradients of the horizontal wind are between 35 and 45 m/s/km and vertical velocities inside the billows are ± 12 m/s. Based on the estimated Richardson (< 0.25), horizontal Froude ( ~ 0.8), and buoyancy Reynolds ( ~ 2.5 × 10 4) numbers, the observed event is a KHI that occurs under weak stratification and generates strong turbulence. © 2019. The Authors.