Search Results

Now showing 1 - 2 of 2
  • Item
    Polyphenols delivery by polymeric materials: challenges in cancer treatment
    (Abingdon : Taylor & Francis Group, 2017-2-3) Vittorio, Orazio; Curcio, Manuela; Cojoc, Monica; Goya, Gerardo F.; Hampel, Silke; Iemma, Francesca; Dubrovska, Anna; Cirillo, Giuseppe
    Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
  • Item
    Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin : A Perspective for Glioblastoma Treatment
    (Basel : MDPI, 2019) Makharza, Sami A.; Cirillo, Giuseppe; Vittorio, Orazio; Valli, Emanuele; Voli, Florida; Farfalla, Annafranca; Curcio, Manuela; Iemma, Francesca; Nicoletta, Fiore Pasquale; El-Gendy, Ahmed A.; Goya, Gerardo F.; Hampel, Silke
    Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2 O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3 O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer’s method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2 O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.