Search Results

Now showing 1 - 4 of 4
  • Item
    Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells
    (Cambridge : RSC Publ., 2017) Bachhuka, Akash; Delalat, Bahman; Ghaemi, Soraya Rasi; Gronthos, Stan; Voelcker, Nicolas H.; Vasilev, Krasimir
    Advanced medical devices, treatments and therapies demand an understanding of the role of interfacial properties on the cellular response. This is particularly important in the emerging fields of cell therapies and tissue regeneration. In this study, we evaluate the role of surface nanotopography on the fate of human dental pulp derived stem cells (hDPSC). These stem cells have attracted interest because of their capacity to differentiate to a range of useful lineages but are relatively easy to isolate. We generated and utilized density gradients of gold nanoparticles which allowed us to examine, on a single substrate, the influence of nanofeature density and size on stem cell behavior. We found that hDPSC adhered in greater numbers and proliferated faster on the sections of the gradients with higher density of nanotopography features. Furthermore, greater surface nanotopography density directed the differentiation of hDPSC to osteogenic lineages. This study demonstrates that carefully tuned surface nanotopography can be used to manipulate and guide the proliferation and differentiation of these cells. The outcomes of this study can be important in the rational design of culture substrates and vehicles for cell therapies, tissue engineering constructs and the next generation of biomedical devices where control over the growth of different tissues is required.
  • Item
    Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching
    (Bristol : IOP Publishing, 2016) Brodoceanu, Daniel; Alhmoud, Hashim Z.; Elnathan, Roey; Delalat, Bahman; Voelcker, Nicolas H.; Kraus, Tobias
    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein.
  • Item
    Dense arrays of uniform submicron pores in silicon and their applications
    (Washington D.C. : American Chemical Society, 2015) Brodoceanu, Daniel; Elnathan, Roey; Prieto-Simón, Beatriz; Delalat, Bahman; Guinan, Taryn M.; Kroner, Elmar Karsten; Voelcker, Nicolas H.; Kraus, Tobias
    We report a versatile particle-based route to dense arrays of parallel submicron pores with high aspect ratio in silicon, and explore the application of these arrays in sensors, optics, and polymer micropatterning. Polystyrene (PS) spheres are convectively assembled on gold-coated silicon wafers and sputter-etched, resulting in well-defined gold disc arrays with excellent long-range order. The gold discs act as catalysts in Metal-Assisted Chemical Etching (MACE), yielding uniform pores with straight walls, flat bottoms and high aspect ratio. The resulting pore arrays can be used as robust antireflective surfaces, in biosensing applications, and as templates for polymer replica molding.
  • Item
    Maximizing transfection efficiency of vertically aligned silicon nanowire arrays
    (Hoboken, NJ : Wiley, 2015) Elnathan, Roey; Delalat, Bahman; Brodoceanu, Daniel; Alhoud, Hashim; Harding, Frances J.; Buehler, Katrin; Nelson, Adrienne; Isa, Lucio; Kraus, Tobias; Voelcker, Nicolas H.
    Vertically aligned silicon nanowire (VA‐SiNW) arrays are emerging as a powerful new tool for gene delivery by means of mechanical transfection. In order to utilize this tool efficiently, uncertainties around the required design parameters need to be removed. Here, a combination of nanosphere lithography and templated metal‐assisted wet chemical etching is used to fabricate VA‐SiNW arrays with a range of diameters, heights, and densities. This fabrication strategy allows identification of critical parameters of surface topography and consequently the design of SiNW arrays that deliver plasmid with high transfection efficiency into a diverse range of human cells whilst maintaining high cell viability. These results illuminate the cell‐materials interactions that mediate VA‐SiNW transfection and have the potential to transform gene therapy and underpin future treatment modalities.