Search Results

Now showing 1 - 2 of 2
  • Item
    Large area graphene deposition on hydrophobic surfaces, flexible textiles, glass fibers, 3D structures, and adhesion of graphene layer
    (Basel : MDPI, 2019) Jia, Guobin; Plentz, Jonathan; Dellith, Jan; Dellith, Andrea; Wahyuono, Ruri Agung; Andrä, Gudrun
    Graphene and its derivatives have many superior electrical, thermal, mechanical, chemical, and structural properties, and promise for many applications. One of the issues for scalable applications is the lack of a simple, reliable method that allows the deposit of a well-ordered monolayer using low-cost graphene flakes onto target substrates with different surface properties. Another issue is the adhesion of the deposited graphene thin film, which has not been well investigated yet. Following our former finding of a double self-assembly (DSA) process for efficient deposition of a monolayer of graphene flakes (MGFs), in this work we demonstrate that the DSA process can be applied even on very challenging samples including highly hydrophobic polytetrafluoroethylene (PTFE), flexible textiles, complex 3D objects, and thin glass fibers. Additionally, we tested adhesion of the graphene flakes on the flat glass substrate by scotch tape peel test of the MGFs. The results show that the graphene flakes adhere quite well on the flat glass substrate and most of the graphene flakes stay on the glass. These findings may trigger many large-scale applications of low-cost graphene feedstocks and other 2D materials.
  • Item
    Combining super-resolution microcopy with neuronal network recording using magnesium fluoride thin films as cover layer for multi-electrode array technology
    (Berlin : Nature Publishing, 2019) Schmidl, Lars; Schmidl, Gabriele; Gawlik, Annett; Dellith, Jan; Hübner, Uwe; Tympel, Volker; Schmidl, Frank; Plentz, Jonathan; Geis, Christian; Haselmann, Holger
    We present an approach for fabrication of reproducible, chemically and mechanically robust functionalized layers based on MgF2 thin films on thin glass substrates. These show great advantages for use in super-resolution microscopy as well as for multi-electrode-array fabrication and are especially suited for combination of these techniques. The transparency of the coated substrates with the low refractive index material is adjustable by the layer thickness and can be increased above 92%. Due to the hydrophobic and lipophilic properties of the thin crystalline MgF2 layers, the temporal stable adhesion needed for fixation of thin tissue, e.g. cryogenic brain slices is given. This has been tested using localization-based super-resolution microscopy with currently highest spatial resolution in light microscopy. We demonstrated that direct stochastic optical reconstruction microscopy revealed in reliable imaging of structures of central synapses by use of double immunostaining of post- (homer1 and GluA2) and presynaptic (bassoon) marker structure in a 10 µm brain slice without additional fixing of the slices. Due to the proven additional electrical insulating effect of MgF2 layers, surfaces of multi-electrode-arrays were coated with this material and tested by voltage-current-measurements. MgF2 coated multi-electrode-arrays can be used as a functionalized microscope cover slip for combination with live-cell super-resolution microscopy.