Search Results

Now showing 1 - 7 of 7
  • Item
    Mononuclear clusterfullerene single‐molecule magnet containing strained fused‐pentagons stabilized by a nearly linear metal cyanide cluster
    (Hoboken, NJ : Wiley, 2017) Liu, Fupin; Wang, Song; Gao, Cong-Li; Deng, Qingming; Zhu, Xianjun; Kostanyan, Aram; Westerstrçm, Rasmus; Jin, Fei; Xie, Su‐Yuan; Popov, Alexey A.; Greber, Thomas; Yang, Shangfeng
    Fused‐pentagons results in an increase of local steric strain according to the isolated pentagon rule (IPR), and for all reported non‐IPR clusterfullerenes multiple (two or three) metals are required to stabilize the strained fused‐pentagons, making it difficult to access the single‐atom properties. Herein, we report the syntheses and isolations of novel non‐IPR mononuclear clusterfullerenes MNC@C76 (M=Tb, Y), in which one pair of strained fused‐pentagon is stabilized by a mononuclear cluster. The molecular structures of MNC@C76 (M=Tb, Y) were determined unambiguously by single‐crystal X‐ray diffraction, featuring a non‐IPR C2v(19138)‐C76 cage entrapping a nearly linear MNC cluster, which is remarkably different from the triangular MNC cluster within the reported analogous clusterfullerenes based on IPR‐obeying C82 cages. The TbNC@C76 molecule is found to be a field‐induced single‐molecule magnet (SMM).
  • Item
    Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: Selective synthesis of the single-molecule magnet Dy2TiC@C80and Its Congener Dy2TiC2@C80
    (Hoboken, NJ : Wiley, 2015) Junghans, Katrin; Schlesier, Christin; Kostanyan, Aram; Samoylova, Nataliya A.; Deng, Qingming; Rosenkranz, Marco; Schiemenz, Sandra; Westerström, Rasmus; Greber, Thomas; Büchner, Bernd; Greber, Thomas; Popov, Alexey A.
    The use of methane as a reactive gas dramatically increases the selectivity of the arc‐discharge synthesis of M‐Ti‐carbide clusterfullerenes (M=Y, Nd, Gd, Dy, Er, Lu). Optimization of the process parameters allows the synthesis of Dy2TiC@C80‐I and its facile isolation in a single chromatographic step. A new type of cluster with an endohedral acetylide unit, M2TiC2@C80, is discovered along with the second isomer of M2TiC@C80. Dy2TiC@C80‐(I,II) and Dy2TiC2@C80‐I are shown to be single‐molecule magnets (SMM), but the presence of the second carbon atom in the cluster Dy2TiC2@C80 leads to substantially poorer SMM properties.
  • Item
    Triangular Monometallic Cyanide Cluster Entrapped in Carbon Cage with Geometry-Dependent Molecular Magnetism
    (Washington, DC : ACS Publications, 2016) Liu, Fupin; Gao, Cong-Li; Deng, Qingming; Zhu, Xianjun; Kostanyan, Aram; Westerström, Rasmus; Wang, Song; Tan, Yuan-Zhi; Tao, Jun; Xie, Su-Yuan; Popov, Alexey A.; Greber, Thomas; Yang, Shangfeng
    Clusterfullerenes are capable of entrapping a variety of metal clusters within carbon cage, for which the entrapped metal cluster generally keeps its geometric structure (e.g., bond distance and angle) upon changing the isomeric structure of fullerene cage, and whether the properties of the entrapped metal cluster is geometry-dependent remains unclear. Herein we report an unusual triangular monometallic cluster entrapped in fullerene cage by isolating several novel terbium cyanide clusterfullerenes (TbNC@C82) with different cage isomeric structures. Upon varying the isomeric structure of C82 cage from C2(5) to Cs(6) and to C2v(9), the entrapped triangular TbNC cluster exhibits significant distortions as evidenced by the changes of Tb–C(N) and C–N bond distances and variation of the Tb–C(N)–N(C) angle by up to 20°, revealing that the geometric structure of the entrapped triangular TbNC cluster is variable. All three TbNC@C82 molecules are found to be single-ion magnets, and the change of the geometric structure of TbNC cluster directly leads to the alternation of the magnetic relaxation time of the corresponding TbNC@C82 clusterfullerene.
  • Item
    Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries
    (London : Nature Publishing Group, 2016) Ly, Thuc Hue; Perello, David J.; Zhao, Jiong; Deng, Qingming; Kim, Hyun; Han, Gang Hee; Chae, Sang Hoon; Jeong, Hye Yun; Lee, Young Hee
    Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron microscopy and first-principles calculations. Transmission electron microscopy indicates that grain boundaries are primarily composed of 5–7 dislocation cores with periodicity and additional complex defects formed at high angles, obeying the classical low-angle theory for angles <22°. The inter-domain mobility is minimized for angles <9° and increases nonlinearly by two orders of magnitude before saturating at ∼16 cm2 V−1 s−1 around misorientation angle≈20°. This trend is explained via grain-boundary electrostatic barriers estimated from density functional calculations and experimental tunnelling barrier heights, which are ≈0.5 eV at low angles and ≈0.15 eV at high angles (≥20°).
  • Item
    Self-assembly of endohedral metallofullerenes: A decisive role of cooling gas and metal-carbon bonding
    (Cambridge : Royal Society of Chemistry, 2016) Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.
    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).
  • Item
    Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping
    (London : Nature Publishing Group, 2015) Zhao, Jiong; Deng, Qingming; Ly, Thuc Hue; Han, Gang Hee; Sandeep, Gorantla; Rümmeli, Mark H.
    The great application potential for two-dimensional (2D) membranes (MoS2, WSe2, graphene and so on) aroused much effort to understand their fundamental mechanical properties. The out-of-plane bending rigidity is the key factor that controls the membrane morphology under external fields. Herein we provide an easy method to reconstruct the 3D structures of the folded edges of these 2D membranes on the atomic scale, using high-resolution (S)TEM images. After quantitative comparison with continuum mechanics shell model, it is verified that the bending behaviour of the studied 2D materials can be well explained by the linear elastic shell model. And the bending rigidities can thus be derived by fitting with our experimental results. Recall almost only theoretical approaches can access the bending properties of these 2D membranes before, now a new experimental method to measure the bending rigidity of such flexible and atomic thick 2D membranes is proposed.
  • Item
    Synthesis and isolation of the titanium–scandium endohedral fullerenes—Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80 and Sc2TiC2@Ih‐C80: Metal size tuning of the TiIV/TiIII redox potentials
    (Hoboken, NJ : Wiley, 2016) Junghans, Katrin; Ghiassi, Kamran B.; Samoylova, Nataliya A.; Deng, Qingming; Rosenkranz, Marco; Olmstead, Marylin M.; Balch, Alan L.; Popov, Alexey A.
    The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed‐metal Sc–Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4C2@C80 (the most abundant EMF from this synthesis), Sc3C2@C80, isomers of Sc2C2@C82, and the family Sc2C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3CH@C80. The Sc–Ti/CH4 system produces the mixed‐metal Sc2TiC@C2 n (2 n=68, 78, 80) and Sc2TiC2@C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition‐metal‐containing endohedral fullerenes, Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80, and Sc2TiC2@Ih‐C80, were characterized by NMR spectroscopy. The structure of Sc2TiC@Ih‐C80 was also determined by single‐crystal X‐ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2TiC‐ and Sc2TiC2‐containing clusterfullerenes have Ti‐localized LUMOs. Encapsulation of the redox‐active Ti ion inside the fullerene cage enables analysis of the cluster–cage strain in the endohedral fullerenes through electrochemical measurements.