Search Results

Now showing 1 - 10 of 16
  • Item
    Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt
    (Basel : MDPI, 2023) Monecke, Stefan; Bedewy, Amira K.; Müller, Elke; Braun, Sascha D.; Diezel, Celia; Elsheredy, Amel; Kader, Ola; Reinicke, Martin; Ghazal, Abeer; Rezk, Shahinda; Ehricht, Ralf
    The present study aims to characterise clinical MRSA isolates from a tertiary care centre in Egypt’s second-largest city, Alexandria. Thirty isolates collected in 2020 were genotypically characterised by microarray to detect their resistance and virulence genes and assign them to clonal complexes (CC) and strains. Isolates belonged to 11 different CCs and 14 different strains. CC15-MRSA-[V+fus] (n = 6), CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) (n = 5) as well as CC1-MRSA-[V+fus+tir+ccrA/B-1] and CC1153-MRSA-[V+fus] (PVL+) (both with n = 3) were the most common strains. Most isolates (83%) harboured variant or composite SCCmec V or VI elements that included the fusidic acid resistance gene fusC. The SCCmec [V+fus+tir+ccrA/B-1] element of one of the CC1 isolates was sequenced, revealing a presence not only of fusC but also of blaZ, aacA-aphD and other resistance genes. PVL genes were also common (40%). The hospital-acquired MRSA CC239-III strain was only found twice. A comparison to data from a study on strains collected in 2015 (Montelongo et al., 2022) showed an increase in fusC and PVL carriage and a decreasing prevalence of the CC239 strain. These observations indicate a diffusion of community-acquired strains into hospital settings. The beta-lactam use in hospitals and the widespread fusidic acid consumption in the community might pose a selective pressure that favours MRSA strains with composite SCCmec elements comprising mecA and fusC. This is an unsettling trend, but more MRSA typing data from Egypt are required.
  • Item
    An epidemic CC1-MRSA-IV clone yields false-negative test results in molecular MRSA identification assays: a note of caution, Austria, Germany, Ireland, 2020
    (Stockholm : European Centre for Disease Prevention and Control, 2020) Monecke, Stefan; König, Elisabeth; Earls, Megan R.; Leitner, Eva; Müller, Elke; Wagner, Gabriel E.; Poitz, David M.; Jatzwauk, Lutz; Vremerǎ, Teodora; Dorneanu, Olivia S.; Simbeck, Alexandra; Ambrosch, Andreas; Zollner-Schwetz, Ines; Krause, Robert; Ruppitsch, Werner; Schneider-Brachert, Wulf; Coleman, David C.; Steinmetz, Ivo; Ehricht, Ralf
    We investigated why a clinical meticillin-resistant Staphylococcus aureus (MRSA) isolate yielded false-negative results with some commercial PCR tests for MRSA detection. We found that an epidemic European CC1-MRSA-IV clone generally exhibits this behaviour. The failure of the assays was attributable to a large insertion in the orfX/SCCmec integration site. To ensure the reliability of molecular MRSA tests, it is vital to monitor emergence of new SCCmec types and junction sites.
  • Item
    Characterisation of a novel composite SCCmec-SCCfus element in an emerging Staphylococcus aureus strain from the Arabian Gulf region
    (San Francisco : Public Library of Science, 2019) Senok, Abiola; Slickers, Peter; Hotzel, Helmut; Boswihi, Samar; Braun, Sascha D.; Gawlik, Darius; Müller, Elke; Nabi, Anju; Nassar, Rania; Nitschke, Hedda; Reißig, Annett; Ruppelt-Lorz, Antje; Mafofo, Joseph; Somili, Ali M.; Udo, Edet; Ehricht, Ralf; Monecke, Stefan
    Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.
  • Item
    Phenotypic and Molecular Detection of Biofilm Formation in Staphylococcus aureus Isolated from Different Sources in Algeria
    (Basel : MDPI, 2020) Achek, Rachid; Hotzel, Helmut; Nabi, Ibrahim; Kechida, Souad; Mami, Djamila; Didouh, Nassima; Tomaso, Herbert; Neubauer, Heinrich; Ehricht, Ralf; Monecke, Stefan; El-Adawy, Hosny
    Staphylococcus aureus is an opportunistic bacterium causing a wide variety of diseases. Biofilm formation of Staphylococcus aureus is of primary public and animal health concern. The purposes of the present study were to investigate the ability of Staphylococcus aureus isolated from animals, humans, and food samples to form biofilms and to screen for the presence of biofilmassociated and regulatory genes. In total, 55 Staphylococcus aureus isolated from sheep mastitis cases (n = 28), humans (n = 19), and from food matrices (n = 8) were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ability of Staphylococcus aureus for slime production and biofilm formation was determined quantitatively. A DNA microarray examination was performed to detect adhesion genes (icaACD and biofilmassociated protein gene (bap)), genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), regulatory genes (accessory gene regulator (agr) and staphylococcal accessory regulator (sarA)), and the staphylococcal cassette chromosome mec elements (SCCmec). Out of 55 Staphylococcus aureus isolates, 39 (71.0%) and 23 (41.8%) were producing slime and biofilm, respectively. All Staphylococcus aureus strains isolated from food showed biofilm formation ability. 52.6% of the Staphylococcus aureus strains isolated from sheep with mastitis, and 17.9% of isolates from humans, were able to form a biofilm. Microarray analysis typed the Staphylococcus aureus into 15 clonal complexes. Among all Staphylococcus aureus isolates, four of the human isolates (21.1%) harbored the mecA gene (SCCmec type IV) typed into 2 clonal complexes (CC22-MRSA-IV and CC80-MRSA-IV) and were considered as methicillin-resistant, while two of them were slime-producing. None of the isolates from sheep with mastitis harbored the cna gene which is associated with biofilm production. The fnbB gene was found in 100%, 60% and 40% of biofilm-producing Staphylococcus aureus isolated from food, humans, and sheep with mastitis, respectively. Three agr groups were present and agr group III was predominant with 43.6%, followed by agr group I (38.2%), and agr group II (18.2%). This study revealed the capacity of Staphylococcus aureus isolates to form biofilms and highlighted the genetic background displayed by Staphylococcus aureus isolates from different sources in Algeria. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Characterization of antibiotic and biocide resistance genes and virulence factors of staphylococcus species associated with bovine mastitis in Rwanda
    (Basel : MDPI AG, 2020) Antók, Fruzsina Irén; Mayrhofer, Rosa; Marbach, Helene; Masengesho, Jean Claude; Keinprecht, Helga; Nyirimbuga, Vedaste; Fischer, Otto; Lepuschitz, Sarah; Ruppitsch, Werner; Ehling-Schulz, Monika; Feßler, Andrea T.; Schwarz, Stefan; Monecke, Stefan; Ehricht, Ralf; Grunert, Tom; Spergser, Joachim; Loncaric, Igor
    The present study was conducted from July to August 2018 on milk samples taken at dairy farms in the Northern Province and Kigali District of Rwanda in order to identify Staphylococcus spp. associated with bovine intramammary infection. A total of 161 staphylococcal isolates originating from quarter milk samples of 112 crossbred dairy cattle were included in the study. Antimicrobial susceptibility testing was performed and isolates were examined for the presence of various resistance genes. Staphylococcus aureus isolates were also analyzed for the presence of virulence factors, genotyped by spa typing and further phenotypically subtyped for capsule expression using Fourier Transform Infrared (FTIR) spectroscopy. Selected S. aureus were characterized using DNA microarray technology, multi-locus sequence typing (MLST) and whole-genome sequencing. All mecA-positive staphylococci were further genotyped using dru typing. In total, 14 different staphylococcal species were detected, with S. aureus being most prevalent (26.7%), followed by S. xylosus (22.4%) and S. haemolyticus (14.9%). A high number of isolates was resistant to penicillin and tetracycline. Various antimicrobial and biocide resistance genes were detected. Among S. aureus, the Panton–Valentine leukocidin (PVL) genes, as well as bovine leukocidin (LukM/LukF-P83) genes, were detected in two and three isolates, respectively, of which two also carried the toxic shock syndrome toxin gene tsst-1 bovine variant. t1236 was the predominant spa type. FTIR-based capsule serotyping revealed a high prevalence of non-encapsulated S. aureus isolates (89.5%). The majority of the selected S. aureus isolates belonged to clonal complex (CC) 97 which was determined using DNA microarray based assignment. Three new MLST sequence types were detected. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Clonal Complexes Distribution of Staphylococcus aureus Isolates from Clinical Samples from the Caribbean Islands
    (Basel : MDPI, 2023) Monecke, Stefan; Akpaka, Patrick Eberechi; Smith, Margaret R.; Unakal, Chandrashekhar G.; Thoms Rodriguez, Camille-Ann; Ashraph, Khalil; Müller, Elke; Braun, Sascha D.; Diezel, Celia; Reinicke, Martin; Ehricht, Ralf
    The aim of this study was to comprehensively characterise S. aureus from the Caribbean Islands of Trinidad and Tobago, and Jamaica. A total of 101 S. aureus/argenteus isolates were collected in 2020, mainly from patients with skin and soft tissue infections. They were characterised by DNA microarray allowing the detection of ca. 170 target genes and assignment to clonal complexes (CC)s and strains. In addition, the in vitro production of Panton–Valentine leukocidin (PVL) was examined by an experimental lateral flow assay. Two isolates were identified as S. argenteus, CC2596. The remaining S. aureus isolates were assigned to 21 CCs. The PVL rate among methicillin-susceptible S. aureus (MSSA) isolates was high (38/101), and 37 of the 38 genotypically positive isolates also yielded positive lateral flow results. The isolate that did not produce PVL was genome-sequenced, and it was shown to have a frameshift mutation in agrC. The high rate of PVL genes can be attributed to the presence of a known local CC8–MSSA clone in Trinidad and Tobago (n = 12) and to CC152–MSSA (n = 15). In contrast to earlier surveys, the USA300 clone was not found, although one MSSA isolate carried the ACME element, probably being a mecA-deficient derivative of this strain. Ten isolates, all from Trinidad and Tobago, were identified as MRSA. The pandemic ST239–MRSA–III strain was still common (n = 7), but five isolates showed a composite SCCmec element not observed elsewhere. Three isolates were sequenced. That showed a group of genes (among others, speG, crzC, and ccrA/B-4) to be linked to its SCC element, as previously found in some CC5– and CC8–MRSA, as well as in S. epidermidis. The other three MRSA belonged to CC22, CC72, and CC88, indicating epidemiological connections to Africa and the Middle East.
  • Item
    The First Report of mcr-1-Carrying Escherichia coli Originating from Animals in Serbia
    (Basel : MDPI, 2021) Mišić, Dušan; Kiskaroly, Ferenc; Szostak, Michael P.; Cabal, Adriana; Ruppitsch, Werner; Bernreiter-Hofer, Tanja; Milovanovic, Viktoria; Feßler, Andrea T.; Allerberger, Franz; Spergser, Joachim; Müller, Elke; Schwarz, Stefan; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf; Korus, Maciej; Benković, Damir; Korzeniowska, Malgorzata; Loncaric, Igor
    The aim of this study was continuous monitoring of the presence of mcr-1 to mcr-5 genes in Enterobacterales isolated from cattle, pigs, and domestic poultry at intensive breeding facilities in Northern Vojvodina, Serbia, from 1 January 1 to 1 October 2020. Out of 2167 examined samples, mcr-1 was observed in five E. coli isolates originating from healthy turkeys. Four isolates belonged to the phylogenetic group B1, and one isolate to the phylogenetic group A. Detected E. coli serogenotypes (somatic O and flagellar H antigens) were O8:H25 and O29:H25. Core-genome multi-locus sequence typing (cgMLST) revealed three ST58 isolates clustering together in Clonal Complex (CC) 155 and two singletons of ST641-CC86 and ST410-CC23, respectively. Clonotyping revealed CH4-32 (n = 3), CH6-53 (n = 1) and CH4-24 (n = 1). In all isolates, the mcr-1 gene was located on a large IncX4 replicon type plasmid. Eight virulence-associated genes (VAGs) typical of avian pathogenic E. coli (APEC) (fyuA, fimH, hlyF, iss, ompT, sitA, traT, iroN) were detected in four isolates. These isolates were investigated for susceptibility to four biocides and revealed MIC values of 0.125% for glutardialdehyde, of 0.00003-0.00006% for chlorohexidine, of 4-6% for isopropanol and of 0.001-0.002% for benzalkonium chloride. All obtained MIC values of the tested biocides were comparable to the reference strain, with no indication of possible resistance. This is the first report of mcr-1.1-carrying E. coli from Serbia. Although only samples from turkeys were mcr-positive in this study, continuous monitoring of livestock samples is advised to prevent a spill-over from animals to humans.
  • Item
    Staphylococcus aureus and methicillin resistant S. Aureus in nepalese primates: Resistance to antimicrobials, virulence, and genetic lineages
    (Basel : MDPI AG, 2020) Roberts, Marilyn C.; Joshi, Prabhu Raj; Monecke, Stefan; Ehricht, Ralf; Müller, Elke; Gawlik, Darius; Diezel, Celia; Braun, Sascha D.; Paudel, Saroj; Acharya, Mahesh; Khanal, Laxman; Koju, Narayan P.; Chalise, Mukesh; Kyes, Randall C.
    Staphylococcus aureus is a ubiquitous pathogen and colonizer in humans and animals. There are few studies on the molecular epidemiology of S. aureus in wild monkeys and apes. S. aureus carriage in rhesus macaques (Macaca mulatta) and Assam macaques (Macaca assamensis) is a species that has not previously been sampled and lives in remote environments with limited human contact. Forty Staphylococcus aureus isolates including 33 methicillin-susceptible S. aureus (MSSA) and seven methicillin-resistant S. aureus (MRSA) were characterized. Thirty-four isolates were from rhesus macaques and six isolates (five MSSA, one MRSA) were from Assam macaques. Isolates were characterized using StaphyType DNA microarrays. Five of the MRSA including one from Assam macaque were CC22 MRSA-IV (PVL+/tst+), which is a strain previously identified in Nepalese rhesus. One MRSA each were CC6 MRSA-IV and CC772 MRSA-V (PVL+). One MSSA each belonged to CC15, CC96, and CC2990. Six MRSA isolates carried the blaZ, while ten known CC isolates (seven MRSA, three MSSA) carried a variety of genes including aacA-aphD, aphA3, erm(C), mph(C), dfrA, msrA, and/or sat genes. The other 30 MSSA isolates belonged to 17 novel clonal complexes, carried no antibiotic resistance genes, lacked Panton–Valentine Leukocidin (PVL), and most examined exotoxin genes. Four clonal complexes carried egc enterotoxin genes, and four harbored edinB, which is an exfoliative toxin homologue. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Fast, economic and simultaneous identification of clinically relevant Gram-negative species with multiplex real-time PCR
    (London : Future Medicine Ltd, 2019) Weiss, Daniel; Gawlik, Darius; Hotzel, Helmut; Engelmann, Ines; Mueller, Elke; Slickers, Peter; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf
    Aim: A newly designed multiplex real-time PCR (rt-PCR) was validated to detect four clinically relevant Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa). Materials & methods: Serial dilutions of genomic DNA were used to determine the limit of detection. Colony PCR was performed with isolates of the four selected species and other species as negative controls. Isolates were characterized genotypically and phenotypically to evaluate the assay. Results: Specific signals of all target genes were detected with diluted templates comprising ten genomic equivalents. Using colony rt-PCR, all isolates of the target species were identified correctly. All negative control isolates were negative. Conclusion: The genes gad, basC, khe and ecfX can reliably identify these four species via multiplex colony rt-PCR. © 2018 Daniel Weiss.
  • Item
    Emergence of novel methicillin resistant Staphylococcus aureus strains in a tertiary care facility in Tiyadh, Saudi Arabia
    (Macclesfield, UK : Dove Medical Press, 2019) Senok, Abiola; Somili, Ali M.; Nassar, Rania; Garaween, Ghada; Kim Sing, Garwin; Müller, Elke; Reißig, Annett; Gawlik, Darius; Ehricht, Ralf; Monecke, Stefan
    Purpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.Purpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.