Search Results

Now showing 1 - 2 of 2
  • Item
    Modelling of a radio frequency plasma bridge neutralizer (RFPBN)
    (Amsterdam [u.a.] : Elsevier, 2017) Scholze, F.; Eichhorn, C.; Bundesmann, C.; Spemann, D.; Neumann, H.; Bulit, A.; Feili, D.; Gonzalez del Amo, J.
    A performance model of a radio frequency plasma bridge neutralizer was developed to calculate the electrical parameters and optimize the neutralizer design. Minimization of power losses and gas consumption, and a maximization of the neutralizer lifetime and the reliability of the system are requirements of all electric propulsion concepts and strongly determine their future application. The requirements of the neutralizer depend on mission profiles.
  • Item
    Advanced Electric Propulsion Diagnostic Tools at IOM
    (Amsterdam [u.a.] : Elsevier, 2017) Bundesmann, C.; Eichhorn, C.; Scholze, F.; Spemann, D.; Neumann, H.; Scortecci, F.; Leiter, H.J.; Holste, K.; Klar, P.J.; Bulit, A.; Dannenmayer, K.; Amo, J. Gonzalez del
    Recently, we have set up an Advanced Electric Propulsion Diagnostic (AEPD) platform [1], which allows for the in-situ measurement of a comprehensive set of thruster performance parameters. The platform utilizes a five-axis-movement system for precise positioning of the thruster with respect to the diagnostic heads. In the first setup (AEPD1) an energy-selective mass spectrometer (ESMS) and a miniaturized Faraday probe for ion beam characterization, a telemicroscope and a triangular laser head for measuring the erosion of mechanical parts, and a pyrometer for surface temperature measurements were integrated. The capabilities of the AEPD1 platform were demonstrated with two electric propulsion thrusters, a gridded ion thruster RIT 22 (Airbus Defence & Space, Germany, [13]) and a Hall effect thruster SPT 100D EM1 (EDB Fakel, Russia, [1], [4]), in two different vacuum facilities.