Search Results

Now showing 1 - 2 of 2
  • Item
    The proteome of human liver peroxisomes: Identification of five new peroxisomal constituents by a label-free quantitative proteomics survey
    (San Francisco, CA : Public Library of Science, 2013) Gronemeyer, Thomas; Wiese, Sebastian; Ofman, Rob; Bunse, Christian; Pawlas, Magdalena; Hayen, Heiko; Eisenacher, Martin; Stephan, Christian; Meyer, Helmut E.; Waterham, Hans R.; Erdmann, Ralf; Wanders, Ronald J.; Warscheid, Bettina
    The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or b-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD+ becomes regenerated during fatty acid b-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease.
  • Item
    Highly immunoreactive IgG antibodies directed against a set of twenty human proteins in the sera of patients with amyotrophic lateral sclerosis identified by protein array
    (San Francisco, CA : Public Library of Science, 2014) May, Caroline; Nordhoff, Eckhard; Casjens, Swaantje; Turewicz, Michael; Eisenacher, Martin; Gold, Ralf; BrĂ¼ning, Thomas; Pesch, Beate; Stephan, Christian; Woitalla, Dirk; Penke, Botond; JanĂ¡ky, TamĂ¡s; VirĂ³k, DezsÅ‘; SiklĂ³s, LĂ¡szlĂ³; Engelhardt, Jozsef I.; Meyer, Helmut E.
    Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.