Search Results

Now showing 1 - 2 of 2
  • Item
    A phenomenology of new particle formation (NPF) at 13 European sites
    (Katlenburg-Lindau : European Geosciences Union, 2021) Bousiotis, Dimitrios; Pope, Francis D.; Beddows, David C. S.; Dall'Osto, Manuel; Massling, Andreas; Nøjgaard, Jakob Klenø; Nordstrøm, Claus; Niemi, Jarkko V.; Portin, Harri; Petäjä, Tuukka; Perez, Noemi; Alastuey, Andrés; Querol, Xavier; Kouvarakis, Giorgos; Mihalopoulos, Nikos; Vratolis, Stergios; Eleftheriadis, Konstantinos; Wiedensohler, Alfred; Weinhold, Kay; Merkel, Maik; Tuch, Thomas; Harrison, Roy M.
    New particle formation (NPF) events occur almost everywhere in the world and can play an important role as a particle source. The frequency and characteristics of NPF events vary spatially, and this variability is yet to be fully understood. In the present study, long-term particle size distribution datasets (minimum of 3 years) from 13 sites of various land uses and climates from across Europe were studied, and NPF events, deriving from secondary formation and not traffic-related nucleation, were extracted and analysed. The frequency of NPF events was consistently found to be higher at rural background sites, while the growth and formation rates of newly formed particles were higher at roadsides (though in many cases differences between the sites were small), underlining the importance of the abundance of condensable compounds of anthropogenic origin found there. The growth rate was higher in summer at all rural background sites studied. The urban background sites presented the highest uncertainty due to greater variability compared to the other two types of site. The origin of incoming air masses and the specific conditions associated with them greatly affect the characteristics of NPF events. In general, cleaner air masses present higher probability for NPF events, while the more polluted ones show higher growth rates. However, different patterns of NPF events were found, even at sites in close proximity (<ĝ€¯200ĝ€¯km), due to the different local conditions at each site. Region-wide events were also studied and were found to be associated with the same conditions as local events, although some variability was found which was associated with the different seasonality of the events at two neighbouring sites. NPF events were responsible for an increase in the number concentration of ultrafine particles of more than 400ĝ€¯% at rural background sites on the day of their occurrence. The degree of enhancement was less at urban sites due to the increased contribution of other sources within the urban environment. It is evident that, while some variables (such as solar radiation intensity, relative humidity, or the concentrations of specific pollutants) appear to have a similar influence on NPF events across all sites, it is impossible to predict the characteristics of NPF events at a site using just these variables, due to the crucial role of local conditions. © Author(s) 2021.
  • Item
    Absorption instruments inter-comparison campaign at the Arctic Pallas station
    (Katlenburg-Lindau : European Geosciences Union, 2021) Asmi, Eija; Backman, John; Servomaa, Henri; Virkkula, Aki; Gini, Maria I.; Eleftheriadis, Konstantinos; Müller, Thomas; Ohata, Sho; Kondo, Yutaka; Hyvärinen, Antti
    Aerosol light absorption was measured during a 1-month field campaign in June-July 2019 at the Pallas Global Atmospheric Watch (GAW) station in northern Finland. Very low aerosol concentrations prevailed during the campaign, which posed a challenge for the instruments' detection capabilities. The campaign provided a real-world test for different absorption measurement techniques supporting the goals of the European Metrology Programme for Innovation and Research (EMPIR) Black Carbon (BC) project in developing aerosol absorption standard and reference methods. In this study we compare the results from five filter-based absorption techniques - aethalometer models AE31 and AE33, a particle soot absorption photometer (PSAP), a multi-angle absorption photometer (MAAP), and a continuous soot monitoring system (COSMOS) - and from one indirect technique called extinction minus scattering (EMS). The ability of the filter-based techniques was shown to be adequate to measure aerosol light absorption coefficients down to around 0.01g¯Mm-1 levels when data were averaged to 1-2g¯h. The hourly averaged atmospheric absorption measured by the reference MAAP was 0.09g¯Mm-1 (at a wavelength of 637g¯nm). When data were averaged for >1g¯h, the filter-based methods agreed to around 40g¯%. COSMOS systematically measured the lowest absorption coefficient values, which was expected due to the sample pre-treatment in the COSMOS inlet. PSAP showed the best linear correlation with MAAP (slopeCombining double low line0.95, R2Combining double low line0.78), followed by AE31 (slopeCombining double low line0.93). A scattering correction applied to PSAP data improved the data accuracy despite the added noise. However, at very high scattering values the correction led to an underestimation of the absorption. The AE31 data had the highest noise and the correlation with MAAP was the lowest (R2Combining double low line0.65). Statistically the best linear correlations with MAAP were obtained for AE33 and COSMOS (R2 close to 1), but the biases at around the zero values led to slopes clearly below 1. The sample pre-treatment in the COSMOS instrument resulted in the lowest fitted slope. In contrast to the filter-based techniques, the indirect EMS method was not adequate to measure the low absorption values found at the Pallas site. The lowest absorption at which the EMS signal could be distinguished from the noise was >0.1g¯Mm-1 at 1-2g¯h averaging times. The mass absorption cross section (MAC) value measured at a range 0-0.3g¯Mm-1 was calculated using the MAAP and a single particle soot photometer (SP2), resulting in a MAC value of 16.0±5.7g¯m2g-1. Overall, our results demonstrate the challenges encountered in the aerosol absorption measurements in pristine environments and provide some useful guidelines for instrument selection and measurement practices. We highlight the need for a calibrated transfer standard for better inter-comparability of the absorption results. © Author(s) 2021.