Search Results

Now showing 1 - 7 of 7
  • Item
    Uniqueness in determining polyhedral sound-hard obstacles with a single incoming wave
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Elschner, Johannes; Yamamoto, Masahiro
    We consider the inverse acoustic scattering problem of determining a sound-hard obstacle by far field measurements. It is proved that a polyhedral scatterer in $R^n, nge 2$, consisting of finitely many solid polyhedra, is uniquely determined by a single incoming plane wave.
  • Item
    An optimisation method in inverse acoustic scattering by an elastic obstacle
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Elschner, Johannes; Hsiao, George C.; Rathsfeld, Andreas
    We consider the interaction between an elastic body and a compressible inviscid fluid, which occupies the unbounded exterior domain. The inverse problem of determining the shape of such an elastic scatterer from the measured far field pattern of the scattered fluid pressure field is of central importance in detecting and identifying submerged objects. Following a method proposed by Kirsch and Kress, we approximate the acoustic and elastodynamic wave by potentials over auxiliary surfaces, and we reformulate the inverse problem as an optimisation problem. The objective function to be minimised is the sum of three terms. The first is the deviation of the approximate far field pattern from the measured one, the second is a regularisation term, and the last a control term for the transmission condition. We prove that the optimisation problem has a solution and that, for the regularisation parameter tending to zero, the minimisers tend to a solution of the inverse problem. In contrast to a numerical method from a previous paper, the presented method does require neither a direct solution method nor an additional treatment of possible Jones modes.
  • Item
    Variational approach to scattering of plane elastic waves by diffraction gratings
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Elschner, Johannes; Hu, Guanghui
    The scattering of a time-harmonic plane elastic wave by a two-dimensional periodic structure is studied. The grating profile is given by a Lipschitz curve on which the displacement vanishes. Using a variational formulation in a bounded periodic cell involving a nonlocal boundary operator, existence of solutions in quasi-periodic Sobolev spaces is investigated by establishing the Fredholmness of the operator generated by the corresponding sesquilinear form. Moreover, by a Rellich identity, uniqueness is proved under the assumption that the grating profile is given by a Lipschitz graph. The direct scattering problem for transmission gratings is also investigated. In this case, uniqueness is proved except for a discrete set of frequencies.
  • Item
    Uniqueness in inverse elastic scattering with finitely many incident waves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Elschner, Johannes; Yamamoto, Masahiro
    We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation.
  • Item
    An inverse problem for fluid-solid interaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Elschner, Johannes; Hsiao, George C.; Rathsfeld, Andreas
    Any acoustic plane wave incident to an elastic obstacle results in a scattered field with a corresponding far field pattern. Mathematically, the scattered field is the solution of a transmission problem coupling the reduced elastodynamic equations over the domain occupied by the obstacle with the Helmholtz equation in the exterior. The far field pattern is obtained applying an integral operator to the scattered field function restricted to a simple smooth surface surrounding the obstacle. The subject of our paper is the inverse problem, where the shape of the elastic body represented by a parametrization of its boundary is to be reconstructed from a finite number of measured far field patterns. We define a family of objective functionals depending on a non-negative regularization parameter such that, for regularization parameter zero, the shape of the sought elastic obstacle is a minimizer of the functional. For any positive regularization parameter, there exists a regularized solution minimizing the functional. Moreover, for the regularization parameter tending to zero, these regularized solutions converge to the solution of the inverse problem provided the latter is uniquely determined by the given far field patterns. The whole approach is based on the variational form of the partial differential operators involved. Hence, numerical approximations can be found applying finite element discretization. Note that, though the transmission problem in its weak formulation may have non-unique solutions for domains with so-called Jones frequencies, the scattered field and its far field pattern is unique and depend continuously on the shape of the obstacle.
  • Item
    Optimal regularity for elliptic transmission problems including C1 interfaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Elschner, Johannes; Rehberg, Joachim; Schmidt, Gunther
    We prove an optimal regularity result for elliptic operators $-nabla cdot mu nabla:W^1,q_0 rightarrow W^-1,q$ for a $q>3$ in the case when the coefficient function $mu$ has a jump across a $C^1$ interface and is continuous elsewhere. A counterexample shows that the $C^1$ condition cannot be relaxed in general. Finally, we draw some conclusions for corresponding parabolic operators.
  • Item
    Variational approach in weighted Sobolev spaces to scattering by unbounded rough surface
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Chandler-Wilde, Simon N.; Elschner, Johannes
    [no abstract available]