Search Results

Now showing 1 - 2 of 2
  • Item
    Wildfire smoke triggers cirrus formation: Lidar observations over the eastern Mediterranean
    (Katlenburg-Lindau : EGU, 2023) Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Ohneiser, Kevin; Knopf, Daniel A.; Nisantzi, Argyro; Bühl, Johannes; Engelmann, Ronny; Skupin, Annett; Seifert, Patric; Baars, Holger; Ene, Dragos; Wandinger, Ulla; Hadjimitsis, Diofantos
    The number of intense wildfires may increase further in upcoming years as a consequence of climate change. It is therefore necessary to improve our knowledge about the role of smoke in the climate system, with emphasis on the impact of smoke particles on the evolution of clouds, precipitation, and cloud radiative properties. Presently, one key aspect of research is whether or not wildfire smoke particles can initiate cirrus formation. In this study, we present lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020, when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. We found strong evidence that aged smoke (organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from -47 to -53° C and caused the formation of extended cirrus layers. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2-3km thick smoke layer was, however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations used as starting values, gravity wave simulations show that the lofting of air by 100-200m is sufficient to initiate significant ice nucleation on the smoke particles, leading to ice crystal number concentrations of 1-100L-1.
  • Item
    Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014
    (Katlenburg-Lindau : EGU, 2017) Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger
    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1°N, 59.6°W), 5000-8000km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064nm with respective dual-wavelength (355, 532nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12000km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252±0.030 at 355nm, 0.280±0.020 at 532nm, and 0.225±0.022 at 1064nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1μm) have sizes around 1.5-2μm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust sources towards the Caribbean.