Search Results

Now showing 1 - 10 of 34
  • Item
    Mineral dust in Central Asia: Combining lidar and other measurements during the Central Asian dust experiment (CADEX)
    (Les Ulis : EDP Sciences, 2018) Althausen, Dietrich; Hofer, Julian; Abdullaev, Sabur; Makhmudov, Abduvosit; Baars, Holger; Engelmann, Ronny; Wadinga Fomba, Khanneh; Müller, Konrad; Schettler, Georg; Klüser, Lars; Kandler, Konrad; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Mineral dust needs to be characterized comprehensively since it contributes to the climate change in Tajikistan / Central Asia. Lidar results from the measurements of mineral dust during CADEX are compared with results of sun photometer measurements, satellite-based measurements, and chemical analysis of ground samples. Although the dust is often advected from far-range sources, it impacts on the local conditions considerably.
  • Item
    Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events
    (Katlenburg-Lindau : Copernicus, 2018) Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George
    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 μm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.
  • Item
    Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data
    (München : European Geopyhsical Union, 2018) Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert
    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg−1 ± 0.72 g kg−1 (with a statistical uncertainty of 0.08 g kg−1 and an instrumental uncertainty of 0.72 g kg−1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10–20 %.
  • Item
    Polarization lidar: An extended three-signal calibration approach
    (Katlenburg-Lindau : Copernicus, 2019) Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Haarig, Moritz; Schmidt, Jörg; Wandinger, Ulla
    We present a new formalism to calibrate a threesignal polarization lidar and to measure highly accurate height profiles of the volume linear depolarization ratios under realistic experimental conditions. The methodology considers elliptically polarized laser light, angular misalignment of the receiver unit with respect to the main polarization plane of the laser pulses, and cross talk among the receiver channels. A case study of a liquid-water cloud observation demonstrates the potential of the new technique. Long-term observations of the calibration parameters corroborate the robustness of the method and the long-term stability of the three-signal polarization lidar. A comparison with a second polarization lidar shows excellent agreement regarding the derived volume linear polarization ratios in different scenarios: A biomass burning smoke event throughout the troposphere and the lower stratosphere up to 16 km in height, a dust case, and also a cirrus cloud case. © Author(s) 2019.
  • Item
    Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106
    (Katlenburg-Lindau : Copernicus, 2020) Griesche, Hannes J.; Seifer, Patric; Ansmann, Albert; Baars, Holger; Velasco, Carola Barrientos; Bühl, Johannes; Engelmann, Ronny; Radenz, Martin; Zhenping, Yin; Macke, Andreas
    From 25 May to 21 July 2017, the research vessel Polarstern performed the cruise PS106 to the high Arctic in the region north and northeast of Svalbard. The mobile remote-sensing platform OCEANET was deployed aboard Polarstern. Within a single container, OCEANET houses state-of-the-art remote-sensing equipment, including a multiwavelength Raman polarization lidar PollyXT and a 14-channel microwave radiometer HATPRO (Humidity And Temperature PROfiler). For the cruise PS106, the measurements were supplemented by a motion-stabilized 35 GHz cloud radar Mira-35. This paper describes the treatment of technical challenges which were immanent during the deployment of OCEANET in the high Arctic. This includes the description of the motion stabilization of the cloud radar Mira-35 to ensure vertical-pointing observations aboard the moving Polarstern as well as the applied correction of the vessels heave rate to provide valid Doppler velocities. The correction ensured a leveling accuracy of ±0.5◦ during transits through the ice and an ice floe camp. The applied heave correction reduced the signal induced by the vertical movement of the cloud radar in the PSD of the Doppler velocity by a factor of 15. Low-level clouds, in addition, frequently prevented a continuous analysis of cloud conditions from synergies of lidar and radar within Cloudnet, because the technically determined lowest detection height of Mira-35 was 165 m above sea level. To overcome this obstacle, an approach for identification of the cloud presence solely based on data from the near-field receiver of PollyXT at heights from 50 m and 165 m above sea level is presented. We found low-level stratus clouds, which were below the lowest detection range of most automatic ground-based remote-sensing instruments during 25 % of the observation time. We present case studies of aerosol and cloud studies to introduce the capabilities of the data set. In addition, new approaches for ice crystal effective radius and eddy dissipation rates from cloud radar measurements and the retrieval of aerosol optical and microphysical properties from the observations of PollyXT are introduced. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Validation of Aeolus wind products above the Atlantic Ocean
    (Katlenburg-Lindau : Copernicus, 2020) Baars, Holger; Herzog, Alina; Heese, Birgit; Ohneiser, Kevin; Hanbuch, Karsten; Hofer, Julian; Yin, Zhenping; Engelmann, Ronny; Wandinger, Ulla
    In August 2018, the first Doppler wind lidar in space called Atmospheric Laser Doppler Instrument (ALADIN) was launched on board the satellite Aeolus by the European Space Agency (ESA). Aeolus measures profiles of one horizontal wind component (i.e., mainly the west-east direction) in the troposphere and lower stratosphere on a global basis. Furthermore, profiles of aerosol and cloud properties can be retrieved via the high spectral resolution lidar (HSRL) technique. The Aeolus mission is supposed to improve the quality of weather forecasts and the understanding of atmospheric processes. We used the opportunity to perform a unique validation of the wind products of Aeolus by utilizing the RV Polarstern cruise PS116 from Bremerhaven to Cape Town in November/December 2018. Due to concerted course modifications, six direct intersections with the Aeolus ground track could be achieved in the Atlantic Ocean west of the African continent. For the validation of the Aeolus wind products, we launched additional radiosondes and used the EARLINET/ACTRIS lidar Polly XT for atmospheric scene analysis. The six analyzed cases prove that Aeolus is able to measure horizontal wind speeds in the nearly west-east direction. Good agreements with the radiosonde observations could be achieved for both Aeolus wind products-the winds observed in clean atmospheric regions called Rayleigh winds and the winds obtained in cloud layers called Mie winds (according to the responsible scattering regime). Systematic and statistical errors of the Rayleigh winds were less than 1.5 and 3.3ms-1, respectively, when compared to radiosonde values averaged to the vertical resolution of Aeolus. For the Mie winds, a systematic and random error of about 1ms-1 was obtained from the six comparisons in different climate zones. However, it is also shown that the coarse vertical resolution of 2km in the upper troposphere, which was set in this early mission phase 2 months after launch, led to an underestimation of the maximum wind speed in the jet stream regions. In summary, promising first results of the first wind lidar space mission are shown and prove the concept of Aeolus for global wind observations. © 2020 Author(s).
  • Item
    Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020 : optical thickness, lidar ratios, and depolarization ratios at 355 and 532nm
    (Katlenburg-Lindau : EGU, 2020) Ohneiser, Kevin; Ansmann, Albert; Baars, Holger; Seifert, Patric; Barja, Boris; Jimenez, Cristofer; Radenz, Martin; Teisseire, Audrey; Floutsi, Athina; Haarig, Moritz; Foth, Andreas; Chudnovsky, Alexandra; Engelmann, Ronny; Zamorano, Félix; Bühl, Johannes; Wandinger, Ulla
    We present particle optical properties of stratospheric smoke layers observed with multiwavelength polarization Raman lidar over Punta Arenas (53.2∘ S, 70.9∘ W), Chile, at the southernmost tip of South America in January 2020. The smoke originated from the record-breaking bushfires in Australia. The stratospheric aerosol optical thickness reached values up to 0.85 at 532 nm in mid-January 2020. The main goal of this rapid communication letter is to provide first stratospheric measurements of smoke extinction-to-backscatter ratios (lidar ratios) and particle linear depolarization ratios at 355 and 532 nm wavelengths. These aerosol parameters are important input parameters in the analysis of spaceborne CALIPSO and Aeolus lidar observations of the Australian smoke spreading over large parts of the Southern Hemisphere in January and February 2020 up to heights of around 30 km. Lidar and depolarization ratios, simultaneously measured at 355 and 532 nm, are of key importance regarding the homogenization of the overall Aeolus (355 nm wavelength) and CALIPSO (532 nm wavelength) lidar data sets documenting the spread of the smoke and the decay of the stratospheric perturbation, which will be observable over the entire year of 2020. We found typical values and spectral dependencies of the lidar ratio and linear depolarization ratio for aged stratospheric smoke. At 355 nm, the lidar ratio and depolarization ratio ranged from 53 to 97 sr (mean 71 sr) and 0.2 to 0.26 (mean 0.23), respectively. At 532 nm, the lidar ratios were higher (75–112 sr, mean 97 sr) and the depolarization ratios were lower with values of 0.14–0.22 (mean 0.18). The determined depolarization ratios for aged Australian smoke are in very good agreement with respective ones for aged Canadian smoke, observed with lidar in stratospheric smoke layers over central Europe in the summer of 2017. The much higher 532 nm lidar ratios, however, indicate stronger absorption by the Australian smoke particles.
  • Item
    The dual-field-of-view polarization lidar technique: A new concept in monitoring aerosol effects in liquid-water clouds - Case studies
    (Katlenburg-Lindau : EGU, 2020) Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Donovan, David; Malinka, Aleksey; Seifert, Patric; Wiesen, Robert; Radenz, Martin; Yin, Zhenping; Bühl, Johannes; Schmidt, Jörg; Barja, Boris; Wandinger, Ulla
    In a companion article (Jimenez et al., 2020), we introduced a new lidar method to derive microphysical properties of liquid-water clouds (cloud extinction coefficient, droplet effective radius, liquid-water content, cloud droplet number concentration Nd) at a height of 50-100m above the cloud base together with aerosol information (aerosol extinction coefficients, cloud condensation nuclei concentration NCCN) below the cloud layer so that detailed studies of the influence of given aerosol conditions on the evolution of liquid-water cloud layers with high temporal resolution solely based on lidar observations have become possible now. The novel cloud retrieval technique makes use of lidar observations of the volume linear depolarization ratio at two different receiver field of views (FOVs). In this article, Part 2, the new dual-FOV polarization lidar technique is applied to cloud measurements in pristine marine conditions at Punta Arenas in southern Chile. A multiwavelength polarization Raman lidar, upgraded by integrating a second polarization-sensitive channel to permit depolarization ratio observations at two FOVs, was used for these measurements at the southernmost tip of South America. Two case studies are presented to demonstrate the potential of the new lidar technique. Successful aerosol-cloud-interaction (ACI) studies based on measurements with the upgraded aerosol-cloud lidar in combination with a Doppler lidar of the vertical wind component could be carried out with 1 min temporal resolution at these pristine conditions. In a stratocumulus layer at the top of the convective boundary layer, we found values of Nd and NCCN (for 0.2% water supersaturation) ranging from 15-100 and 75-200 cm-3, respectively, during updraft periods. The studies of the aerosol impact on cloud properties yielded ACI values close to 1. The impact of aerosol water uptake on the ACI studies was analyzed with the result that the highest ACI values were obtained when considering aerosol proxies (light-extinction coefficient par or NCCN) measured at heights about 500m below the cloud base (and thus for dry aerosol conditions). © 2020 BMJ Publishing Group. All rights reserved.
  • Item
    Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements
    (Katlenburg-Lindau : EGU, 2019) Marinou, Eleni; Tesche, Matthias; Nenes, Athanasios; Ansmann, Albert; Schrod, Jann; Mamali, Dimitra; Tsekeri, Alexandra; Pikridas, Michael; Baars, Holger; Engelmann, Ronny; Voudouri, Kalliopi-Artemis; Solomos, Stavros; Sciare, Jean; Groß, Silke; Ewald, Florian; Amiridis, Vassilis
    Aerosols that are efficient ice-nucleating particles (INPs) are crucial for the formation of cloud ice via heterogeneous nucleation in the atmosphere. The distribution of INPs on a large spatial scale and as a function of height determines their impact on clouds and climate. However, in situ measurements of INPs provide sparse coverage over space and time. A promising approach to address this gap is to retrieve INP concentration profiles by combining particle concentration profiles derived by lidar measurements with INP efficiency parameterizations for different freezing mechanisms (immersion freezing, deposition nucleation). Here, we assess the feasibility of this new method for both ground-based and spaceborne lidar measurements, using in situ observations collected with unmanned aerial vehicles (UAVs) and subsequently analyzed with the FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment) INP counter from an experimental campaign at Cyprus in April 2016. Analyzing five case studies we calculated the cloud-relevant particle number concentrations using lidar measurements (n250,dry with an uncertainty of 20 % to 40 % and Sdry with an uncertainty of 30 % to 50 %), and we assessed the suitability of the different INP parameterizations with respect to the temperature range and the type of particles considered. Specifically, our analysis suggests that our calculations using the parameterization of Ullrich et al. (2017) (applicable for the temperature range −50 to −33 ∘C) agree within 1 order of magnitude with the in situ observations of nINP; thus, the parameterization of Ullrich et al. (2017) can efficiently address the deposition nucleation pathway in dust-dominated environments. Additionally, our calculations using the combination of the parameterizations of DeMott et al. (2015, 2010) (applicable for the temperature range −35 to −9 ∘C) agree within 2 orders of magnitude with the in situ observations of INP concentrations (nINP) and can thus efficiently address the immersion/condensation pathway of dust and nondust particles. The same conclusion is derived from the compilation of the parameterizations of DeMott et al. (2015) for dust and Ullrich et al. (2017) for soot.
  • Item
    EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product
    (Katlenburg-Lindau : EGU, 2019) Proestakis, Emmanouil; Amiridis, Vassilis; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Szkop, Artur; Muñoz Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Liberti, Gian Luigi; Baars, Holger; Mattis, Ina; Stachlewska, Iwona Sylwia; Voudouri, Kalliopi Artemis; Mona, Lucia; Mylonaki, Maria; Perrone, Maria Rita; Costa, Maria João; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Pauly, Rebecca; Engelmann, Ronny; Abdullaev, Sabur; Pappalardo, Gelsomina
    We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1%, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3%. © Author(s) 2019.