Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Time-reversal symmetry breaking type-II Weyl state in YbMnBi2

2019, Borisenko, S., Evtushinsky, D., Gibson, Q., Yaresko, A., Koepernik, K., Kim, T., Ali, M., van den Brink, J., Hoesch, M., Fedorov, A., Haubold, E., Kushnirenko, Y., Soldatov, I., Schäfer, R., Cava, R.J.

Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.

Loading...
Thumbnail Image
Item

Turning charge-density waves into Cooper pairs

2020, Chikina, A., Fedorov, A., Bhoi, D., Voroshnin, V., Haubold, E., Kushnirenko, Y., Kim, K.H., Borisenko, S.

The relationship between charge-density waves (CDWs) and superconductivity is a long-standing debate. Often observed as neighbors in phase diagrams, it is still unclear whether they cooperate, compete, or simply coexist. Using angle-resolved photoemission spectroscopy, we demonstrate here that by tuning the energy position of the van Hove singularity in Pd-doped 2H-TaSe2, one is able to suppress CDW and enhance superconductivity by more than an order of magnitude. We argue that it is particular fermiology of the material that is responsible for each phenomenon, thus explaining their persistent proximity as phases.

Loading...
Thumbnail Image
Item

Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

2016, Güttler, M., Generalov, A., Otrokov, M.M., Kummer, K., Kliemt, K., Fedorov, A., Chikina, A., Danzenbächer, S., Schulz, S., Chulkov, E.V., Koroteev, Yu. M., Caroca-Canales, N., Shi, M., Radovic, M., Geibel, C., Laubschat, C., Dudin, P., Kim, T.K., Hoesch, M., Krellner, C., Vyalikh, D.V.

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

Loading...
Thumbnail Image
Item

Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions

2021, Senkovskiy, B., Nenashev, A., Alavi, S., Falke, Y., Hell, M., Bampoulis, P., Rybkovskiy, D., Usachov, D., Fedorov, A., Chernov, A., Gebhard, F., Meerholz, K., Hertel, D., Arita, M., Okuda, T., Miyamoto, K., Shimada, K., Fischer, F., Michely, T., Baranovskii, S., Lindfors, K., Szkopek, T., Grüneis, A.

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates.

Loading...
Thumbnail Image
Item

Effect of nematic ordering on electronic structure of FeSe

2016, Fedorov, A., Yaresko, A., Kim, T.K., Kushnirenko, Y., Haubold, E., Wolf, T., Hoesch, M., Grüneis, A., Büchner, B., Borisenko, S.V.

Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based superconductors resulted in a controversy not only as regards its origin but also as to the degree of its influence on the electronic structure even in the simplest representative material FeSe. Here we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study the influence of the nematic order on the electronic structure of FeSe and determine its exact energy and momentum scales. Our results strongly suggest that the nematicity in FeSe is electronically driven, we resolve the recent controversy and provide the necessary quantitative experimental basis for a successful theory of superconductivity in iron-based materials which takes into account both, spin-orbit interaction and electronic nematicity.

Loading...
Thumbnail Image
Item

Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa

2020, Yao, M., Manna, K., Yang, Q., Fedorov, A., Voroshnin, V., Valentin Schwarze, B., Hornung, J., Chattopadhyay, S., Sun, Z., Guin, S.N., Wosnitza, J., Borrmann, H., Shekhar, C., Kumar, N., Fink, J., Sun, Y., Felser, C.

Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.

Loading...
Thumbnail Image
Item

Controlled assembly of graphene-capped nickel, cobalt and iron silicides

2013, Vilkov, O., Fedorov, A., Usachov, D., Yashina, L.V., Generalov, A.V., Borygina, K., Verbitskiy, N.I., Grüneis, A., Vyalikh, D.V.

In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs.