Search Results

Now showing 1 - 2 of 2
  • Item
    Wave-shaped polycyclic hydrocarbons with controlled aromaticity
    (Cambridge : RSC, 2019) Ma, Ji; Zhang, Ke; Schellhammer, Karl Sebastian; Fu, Yubin; Komber, Hartmut; Xu, Chi; Popov, Alexey A.; Hennersdorf, Felix; Weigand, Jan J.; Zhou, Shengqiang; Pisula, Wojciech; Ortmann, Frank; Berger, Reinhard; Liu, Junzhi; Feng, Xinliang
    Controlling the aromaticity and electronic properties of curved π-conjugated systems has been increasingly attractive for the development of novel functional materials for organic electronics. Herein, we demonstrate an efficient synthesis of two novel wave-shaped polycyclic hydrocarbons (PHs) 1 and 2 with 64 π-electrons. Among them, the wave-shaped π-conjugated carbon skeleton of 2 is unambiguously revealed by single-crystal X-ray crystallography analysis. The wave-shaped geometry is induced by steric congestion in the cove and fjord regions. Remarkably, the aromaticity of these two structural isomers can be tailored by the annulated direction of cyclopenta[b]fluorene units. Isomer 1 (Eoptg = 1.13 eV) behaves as a closed-shell compound with weakly antiaromatic feature, whereas its structural isomer 2 displays a highly stable tetraradical character (y0 = 0.23; y1 = 0.22; t1/2 = 91 days) with a narrow optical energy gap of 0.96 eV. Moreover, the curved PH 2 exhibits remarkable ambipolar charge transport in solution-processed organic thin-film transistors. Our research provides a new insight into the design and synthesis of stable functional curved aromatics with multiradical characters. © The Royal Society of Chemistry.
  • Item
    Ultrathin two-dimensional conjugated metal– organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis
    (Cambridge : RSC, 2020) Wang, Zhonghao; Wang, Gang; Qi, Haoyuan; Wang, Mao; Wang, Mingchao; Park, SangWook; Wang, Huaping; Yu, Minghao; Kaiser, Ute; Fery, Andreas; Zhou, Shengqiang; Dong, Renhao; Feng, Xinliang
    Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have recently emerged for potential applications in (opto-)electronics, chemiresistive sensing, and energy storage and conversion, due to their excellent electrical conductivity, abundant active sites, and intrinsic porous structures. However, developing ultrathin 2D c-MOF nanosheets (NSs) for facile solution processing and integration into devices remains a great challenge, mostly due to unscalable synthesis, low yield, limited lateral size and low crystallinity. Here, we report a surfactant-assisted solution synthesis toward ultrathin 2D c-MOF NSs, including HHB-Cu (HHB = hexahydroxybenzene), HHB-Ni and HHTP-Cu (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). For the first time, we achieve single-crystalline HHB-Cu(Ni) NSs featured with a thickness of 4-5 nm (∼8-10 layers) and a lateral size of 0.25-0.65 μm2, as well as single-crystalline HHTP-Cu NSs with a thickness of ∼5.1 ± 2.6 nm (∼10 layers) and a lateral size of 0.002-0.02 μm2. Benefiting from the ultrathin feature, the synthetic NSs allow fast ion diffusion and high utilization of active sites. As a proof of concept, when serving as a cathode material for Li-ion storage, HHB-Cu NSs deliver a remarkable rate capability (charge within 3 min) and long-term cycling stability (90% capacity retention after 1000 cycles), superior to the corresponding bulk materials and other reported MOF cathodes. This journal is © The Royal Society of Chemistry.