Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Global irrigation contribution to wheat and maize yield

2021, Wang, Xuhui, Müller, Christoph, Elliot, Joshua, Mueller, Nathaniel D., Ciais, Philippe, Jägermeyr, Jonas, Gerber, James, Dumas, Patrice, Wang, Chenzhi, Yang, Hui, Li, Laurent, Deryng, Delphine, Folberth, Christian, Liu, Wenfeng, Makowski, David, Olin, Stefan, Pugh, Thomas A. M., Reddy, Ashwan, Schmid, Erwin, Jeong, Sujong, Zhou, Feng, Piao, Shilong

Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.

Loading...
Thumbnail Image
Item

Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities

2022, Cinner, Joshua E, Caldwell, Iain R, Thiault, Lauric, Ben, John, Blanchard, Julia L, Coll, Marta, Diedrich, Amy, Eddy, Tyler D, Everett, Jason D, Folberth, Christian, Gascuel, Didier, Guiet, Jerome, Gurney, Georgina G, Heneghan, Ryan F, Jägermeyr, Jonas, Jiddawi, Narriman, Lahari, Rachael, Kuange, John, Liu, Wenfeng, Maury, Olivier, Müller, Christoph, Novaglio, Camilla, Palacios-Abrantes, Juliano, Petrik, Colleen M, Rabearisoa, Ando, Tittensor, Derek P, Wamukota, Andrew, Pollnac, Richard

Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status.

Loading...
Thumbnail Image
Item

A regional nuclear conflict would compromise global food security

2020, Jägermeyr, Jonas, Robock, Alan, Elliott, Joshua, Müller, Christoph, Xia, Lili, Khabarov, Nikolay, Folberth, Christian, Schmid, Erwin, Liu, Wenfeng, Zabel, Florian, Rabin, Sam S., Puma, Michael J., Heslin, Alison, Franke, James, Foster, Ian, Asseng, Senthold, Bardeen, Charles G., Toon, Owen B., Rosenzweig, Cynthia

A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.